Martínez-Jódar Alberto, Villar-Rodil Silvia, Munuera José M, Castro-Muñiz Alberto, Coleman Jonathan N, Raymundo-Piñero Encarnación, Paredes Juan I
Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain.
CEMHTI UPR3079, University of Orléans, CNRS, 1D avenue de la Recherche Scientifique, 45071 Orléans, France.
Nanomaterials (Basel). 2024 May 25;14(11):932. doi: 10.3390/nano14110932.
The preparation of 2H-phase MoS thin nanosheets by electrochemical delamination remains a challenge, despite numerous efforts in this direction. In this work, by choosing appropriate intercalating cations for cathodic delamination, the insertion process was facilitated, leading to a higher degree of exfoliation while maintaining the original 2H-phase of the starting bulk MoS material. Specifically, trimethylalkylammonium cations were tested as electrolytes, outperforming their bulkier tetraalkylammonium counterparts, which have been the focus of past studies. The performance of novel electrochemically derived 2H-phase MoS nanosheets as electrode material for electrochemical energy storage in lithium-ion batteries was investigated. The lower thickness and thus higher flexibility of cathodically exfoliated MoS promoted better electrochemical performance compared to liquid-phase and ultrasonically assisted exfoliated MoS, both in terms of capacity (447 vs. 371 mA·h·g at 0.2 A·g) and rate capability (30% vs. 8% capacity retained when the current density was increased from 0.2 A·g to 5 A·g), as well as cycle life (44% vs. 17% capacity retention at 0.2 A·g after 580 cycles). Overall, the present work provides a convenient route for obtaining MoS thin nanosheets for their advantageous use as anode material for lithium storage.
尽管在这方面已做出诸多努力,但通过电化学剥离制备2H相二硫化钼(MoS)薄纳米片仍然是一项挑战。在这项工作中,通过选择合适的插层阳离子进行阴极剥离,促进了插入过程,在保持起始块状MoS材料原始2H相的同时,实现了更高程度的剥离。具体而言,测试了三甲基烷基铵阳离子作为电解质,其性能优于过去研究重点关注的体积更大的四烷基铵阳离子。研究了新型电化学衍生的2H相MoS纳米片作为锂离子电池电化学储能电极材料的性能。与液相和超声辅助剥离的MoS相比,阴极剥离的MoS厚度更低,因而柔韧性更高,在容量(0.2 A·g时为447 vs. 371 mA·h·g)、倍率性能(电流密度从0.2 A·g增加到5 A·g时容量保持率为30% vs. 8%)以及循环寿命(580次循环后0.2 A·g时容量保持率为44% vs. 17%)方面均表现出更好的电化学性能。总体而言,本工作为获得MoS薄纳米片提供了一条便捷途径,以便其作为锂存储负极材料得到有利应用。