Suppr超能文献

一个高度诱变的大麦(金承诺)TILLING群体以及基于测序的筛选策略。

A highly mutagenised barley ( Golden Promise) TILLING population coupled with strategies for screening-by-sequencing.

作者信息

Schreiber Miriam, Barakate Abdellah, Uzrek Nicola, Macaulay Malcolm, Sourdille Adeline, Morris Jenny, Hedley Pete E, Ramsay Luke, Waugh Robbie

机构信息

1Cell and Molecular Sciences, The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA Scotland UK.

2Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA Scotland UK.

出版信息

Plant Methods. 2019 Aug 24;15:99. doi: 10.1186/s13007-019-0486-9. eCollection 2019.

Abstract

BACKGROUND

We developed and characterised a highly mutagenised TILLING population of the barley () cultivar Golden Promise. Golden Promise is the 'reference' genotype for barley transformation and a primary objective of using this cultivar was to be able to genetically complement observed mutations directly in order to prove gene function. Importantly, a reference genome assembly of Golden Promise has also recently been developed. As our primary interest was to identify mutations in genes involved in meiosis and recombination, to characterise the population we focused on a set of 46 genes from the literature that are possible meiosis gene candidates.

RESULTS

Sequencing 20 plants from the population using whole exome capture revealed that the mutation density in this population is high (one mutation every 154 kb), and consequently even in this small number of plants we identified several interesting mutations. We also recorded some issues with seed availability and germination. We subsequently designed and applied a simple two-dimensional pooling strategy to identify mutations in varying numbers of specific target genes by Illumina short read pooled-amplicon sequencing and subsequent deconvolution. In parallel we assembled a collection of semi-sterile mutants from the population and used a custom exome capture array targeting the 46 candidate meiotic genes to identify potentially causal mutations.

CONCLUSIONS

We developed a highly mutagenised barley TILLING population in the transformation competent cultivar Golden Promise. We used novel and cost-efficient screening approaches to successfully identify a broad range of potentially deleterious variants that were subsequently validated by Sanger sequencing. These resources combined with a high-quality genome reference sequence opens new possibilities for efficient functional gene validation.

摘要

背景

我们开发并鉴定了大麦()品种金承诺(Golden Promise)的高度诱变的定向诱导基因组局部突变群体。金承诺是大麦转化的“参考”基因型,使用该品种的一个主要目标是能够直接对观察到的突变进行基因互补,以证明基因功能。重要的是,最近也开发了金承诺的参考基因组组装。由于我们的主要兴趣是鉴定参与减数分裂和重组的基因中的突变,为了表征该群体,我们重点关注了文献中一组46个可能是减数分裂基因候选者的基因。

结果

使用全外显子捕获对该群体中的20株植物进行测序,结果表明该群体中的突变密度很高(每154 kb有一个突变),因此即使在这少数植物中,我们也鉴定出了几个有趣的突变。我们还记录了种子可用性和发芽方面的一些问题。随后,我们设计并应用了一种简单的二维混合策略,通过Illumina短读混合扩增子测序和随后的反卷积来鉴定不同数量的特定目标基因中的突变。同时,我们从该群体中收集了一组半不育突变体,并使用针对46个减数分裂候选基因的定制外显子捕获阵列来鉴定潜在的致病突变。

结论

我们在具有转化能力的品种金承诺中开发了一个高度诱变的大麦定向诱导基因组局部突变群体。我们使用新颖且经济高效的筛选方法成功鉴定了广泛的潜在有害变体,随后通过桑格测序进行了验证。这些资源与高质量的基因组参考序列相结合,为高效的功能基因验证开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c72/6708184/dbb3a65d235b/13007_2019_486_Fig1_HTML.jpg

相似文献

1
A highly mutagenised barley ( Golden Promise) TILLING population coupled with strategies for screening-by-sequencing.
Plant Methods. 2019 Aug 24;15:99. doi: 10.1186/s13007-019-0486-9. eCollection 2019.
2
A Genome Assembly of the Barley 'Transformation Reference' Cultivar Golden Promise.
G3 (Bethesda). 2020 Jun 1;10(6):1823-1827. doi: 10.1534/g3.119.401010.
3
A reference-guided TILLING by amplicon-sequencing platform supports forward and reverse genetics in barley.
Plant Commun. 2022 Jul 11;3(4):100317. doi: 10.1016/j.xplc.2022.100317. Epub 2022 Mar 12.
4
Genome Assembly of the Canadian two-row Malting Barley cultivar AAC Synergy.
G3 (Bethesda). 2021 Apr 15;11(4). doi: 10.1093/g3journal/jkab031.
7
Fragmentation of Pooled PCR Products for Highly Multiplexed TILLING.
G3 (Bethesda). 2019 Aug 8;9(8):2657-2666. doi: 10.1534/g3.119.400301.
8
The Mutant Allows an Insight Into the DNA Double-Strand Break Repair During Meiosis in Barley ( L.).
Front Plant Sci. 2019 Jun 11;10:761. doi: 10.3389/fpls.2019.00761. eCollection 2019.
9
Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond.
Plant J. 2013 Nov;76(3):494-505. doi: 10.1111/tpj.12294. Epub 2013 Aug 24.

引用本文的文献

4
Genetic Screening of Factors in the Plant Protein Secretion.
Methods Mol Biol. 2024;2841:225-239. doi: 10.1007/978-1-0716-4059-3_22.
5
Augmenting tomato functional genomics with a genome-wide induced genetic variation resource.
Front Plant Sci. 2024 Jan 24;14:1290937. doi: 10.3389/fpls.2023.1290937. eCollection 2023.
6
Generating homozygous mutant populations of barley microspores by ethyl methanesulfonate treatment.
aBIOTECH. 2023 Jun 28;4(3):202-212. doi: 10.1007/s42994-023-00108-6. eCollection 2023 Sep.
7
Is it the end of TILLING era in plant science?
Front Plant Sci. 2023 Aug 22;14:1160695. doi: 10.3389/fpls.2023.1160695. eCollection 2023.
8
Drought and recovery in barley: key gene networks and retrotransposon response.
Front Plant Sci. 2023 Jun 12;14:1193284. doi: 10.3389/fpls.2023.1193284. eCollection 2023.
9
HvSL1 and HvMADS16 promote stamen identity to restrict multiple ovary formation in barley.
J Exp Bot. 2023 Sep 13;74(17):5039-5056. doi: 10.1093/jxb/erad218.
10
Epigenetic Changes Occurring in Plant Inbreeding.
Int J Mol Sci. 2023 Mar 12;24(6):5407. doi: 10.3390/ijms24065407.

本文引用的文献

2
Unleashing meiotic crossovers in crops.
Nat Plants. 2018 Dec;4(12):1010-1016. doi: 10.1038/s41477-018-0311-x. Epub 2018 Nov 26.
3
Tackling Plant Meiosis: From Model Research to Crop Improvement.
Front Plant Sci. 2018 Jun 19;9:829. doi: 10.3389/fpls.2018.00829. eCollection 2018.
4
Nucleosomes and DNA methylation shape meiotic DSB frequency in transposons and gene regulatory regions.
Genome Res. 2018 Apr;28(4):532-546. doi: 10.1101/gr.225599.117. Epub 2018 Mar 12.
6
Heritable Genomic Fragment Deletions and Small Indels in the Putative ENGase Gene Induced by CRISPR/Cas9 in Barley.
Front Plant Sci. 2017 Apr 25;8:540. doi: 10.3389/fpls.2017.00540. eCollection 2017.
7
A chromosome conformation capture ordered sequence of the barley genome.
Nature. 2017 Apr 26;544(7651):427-433. doi: 10.1038/nature22043.
8
Understanding and Manipulating Meiotic Recombination in Plants.
Plant Physiol. 2017 Mar;173(3):1530-1542. doi: 10.1104/pp.16.01530. Epub 2017 Jan 20.
9
Uncovering hidden variation in polyploid wheat.
Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):E913-E921. doi: 10.1073/pnas.1619268114. Epub 2017 Jan 17.
10
HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner.
PLoS One. 2016 Dec 22;11(12):e0168924. doi: 10.1371/journal.pone.0168924. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验