Krasileva Ksenia V, Vasquez-Gross Hans A, Howell Tyson, Bailey Paul, Paraiso Francine, Clissold Leah, Simmonds James, Ramirez-Gonzalez Ricardo H, Wang Xiaodong, Borrill Philippa, Fosker Christine, Ayling Sarah, Phillips Andrew L, Uauy Cristobal, Dubcovsky Jorge
Department of Plant Sciences, University of California, Davis, CA 95616.
The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom.
Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):E913-E921. doi: 10.1073/pnas.1619268114. Epub 2017 Jan 17.
Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35-40 mutations per kb in each population. With these mutation densities, we identified an average of 23-24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.
全面的反向遗传资源对于理解二倍体模式生物中的基因功能至关重要,但在许多多倍体作物中却缺失。像小麦这样不到1万年前才被驯化的年轻多倍体物种,其亚基因组之间具有高度的序列同一性,掩盖了隐性等位基因的作用。这种冗余降低了自然选择或人工选择过程中有利突变被选择的概率,但也使小麦能够耐受高密度的诱导突变。在此,我们利用这一特性对四倍体和六倍体小麦的2735个突变系蛋白质编码区的1000多万个突变进行了测序和编目。我们分别在每个四倍体系和六倍体系中平均检测到2705个和5351个突变,这导致每个群体中每千碱基有35 - 40个突变。基于这些突变密度,我们平均每个基因鉴定出23 - 24个错义突变和截短等位基因,每个群体中超过90%的捕获小麦基因至少有一个截短或有害错义突变。这种突变种子库和序列数据的公共集合能够快速鉴定小麦基因不同拷贝中的突变,这些突变可以组合起来揭示以前隐藏的变异。多倍体是植物进化中的核心现象,许多作物物种最近都经历了基因组复制事件。因此,本文开发的一般策略和方法可使其他多倍体作物受益。