Li Na, Zhan Xianquan
1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People's Republic of China.
2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People's Republic of China.
EPMA J. 2019 Jul 19;10(3):273-290. doi: 10.1007/s13167-019-00175-0. eCollection 2019 Sep.
The pathogenesis and biomarkers of ovarian cancer (OC) remain not well-known in diagnosis, effective therapy, and prognostic assessment in OC personalized medicine. The novel identified lncRNA and mRNA biomarkers from gene co-expression modules associated with clinical traits provide new insight for effective treatment of ovarian cancer.
Long non-coding RNAs (lncRNAs) are relevant to tumorigenesis via multiple mechanisms. This study aimed to investigate cancer-specific lncRNAs and mRNAs, and their related networks in OCs.
This study comprehensively analyzed lncRNAs and mRNAs with associated competing endogenous RNA (ceRNA) network and lncRNA-RNA binding protein-mRNA network in the OC tissues in the Cancer Genome Atlas, including 2562 cancer-specific lncRNAs ( = 352 OC tissues) and 5000 mRNAs ( = 359 OC tissues). The weighted gene co-expression network analysis (WGCNA) was used to construct the co-expression gene modules and their relationship with clinical traits. The statistically significant difference of identified lncRNAs and mRNAs was confirmed with qRT-PCR in OC cells.
An lncRNA-based co-expression module was significantly correlated with patient age at initial pathologic diagnosis, lymphatic invasion, tissues source site, and vascular invasion, and identified 16 lncRNAs (ACTA2-AS1, CARD8-AS1, HCP5, HHIP-AS1, HOTAIRM1, ITGB2-AS1, LINC00324, LINC00605, LINC01503, LINC01547, MIR31HG, MIR155HG, OTUD6B-AS1, PSMG3-AS1, SH3PXD2A-AS1, and ZBED5-AS1) that were significantly related to overall survival in OC patients. An mRNA-based co-expression module was significantly correlated with patient age at initial pathologic diagnosis, lymphatic invasion, tumor residual disease, and vascular invasion; and identified 21 hub-mRNA molecules and 11 mRNAs (FBN3, TCF7L1, SBK1, TRO, TUBB2B, PLCG1, KIAA1549, PHC1, DNMT3A, LAMA1, and C10orf82) that were closely linked with OC patients' overall survival. Moreover, the prognostic model of five-gene signature (OTUD6B-AS1, PSMG3-AS1, ZBED5-AS1, SBK1, and PLCG1) was constructed to predict risk score in OC patients. Furthermore, starBase bioinformatics constructed the lncRNA-miRNA-mRNA and lncRNA-RNA binding protein-mRNA networks in OCs.
These new findings showed that lncRNA-related networks in OCs are a useful resource for identification of biomarkers in OCs.
在卵巢癌(OC)个性化医疗的诊断、有效治疗和预后评估中,卵巢癌的发病机制和生物标志物仍未完全明确。从与临床特征相关的基因共表达模块中新鉴定出的lncRNA和mRNA生物标志物为卵巢癌的有效治疗提供了新的见解。
长链非编码RNA(lncRNAs)通过多种机制与肿瘤发生相关。本研究旨在探究OC中癌症特异性lncRNAs和mRNAs及其相关网络。
本研究全面分析了癌症基因组图谱中OC组织中的lncRNAs和mRNAs以及相关的竞争性内源RNA(ceRNA)网络和lncRNA-RNA结合蛋白-mRNA网络,包括2562个癌症特异性lncRNAs(n = 352个OC组织)和5000个mRNAs(n = 359个OC组织)。采用加权基因共表达网络分析(WGCNA)构建共表达基因模块及其与临床特征的关系。通过qRT-PCR在OC细胞中证实了所鉴定的lncRNAs和mRNAs的统计学显著差异。
一个基于lncRNA的共表达模块与初次病理诊断时的患者年龄、淋巴浸润、组织来源部位和血管浸润显著相关,并鉴定出16个与OC患者总生存期显著相关的lncRNAs(ACTA2-AS1、CARD8-AS1、HCP5、HHIP-AS1、HOTAIRM1、ITGB2-AS1、LINC00324、LINC00605、LINC01503、LINC01547、MIR31HG、MIR155HG、OTUD6B-AS1、PSMG3-AS1、SH3PXD2A-AS1和ZBED5-AS1)。一个基于mRNA的共表达模块与初次病理诊断时的患者年龄、淋巴浸润、肿瘤残留疾病和血管浸润显著相关;并鉴定出21个枢纽mRNA分子和11个与OC患者总生存期密切相关的mRNAs(FBN3、TCF7L1、SBK1、TRO、TUBB2B、PLCG1、KIAA1549、PHC1、DNMT3A、LAMA1和C10orf82)。此外,构建了五基因特征(OTUD6B-AS1、PSMG3-AS1、ZBED5-AS1、SBK1和PLCG)的预后模型来预测OC患者的风险评分。此外,starBase生物信息学构建了OC中的lncRNA-miRNA-mRNA和lncRNA-RNA结合蛋白-mRNA网络。
这些新发现表明,OC中的lncRNA相关网络是鉴定OC生物标志物的有用资源。