Department of Bioscience, Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark.
Department of Bioscience, Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark; Department de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autonòma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
J Therm Biol. 2019 Aug;84:200-207. doi: 10.1016/j.jtherbio.2019.07.005. Epub 2019 Jul 3.
Heat tolerance increases at higher acclimation temperatures in D. melanogaster, but not in D. subobscura. The two species represent separate lineages of the subgenus Sophophora of Drosophila with contrasting tropical African and temperate Palearctic evolutionary histories. D. melanogaster has five copies of the inducible hsp70 gene distributed in two clusters, named A (with two copies) and B (three copies), while D. subobscura has only two copies arranged similarly to cluster A of D. melanogaster. The hsp70s of the two species also differ in their cis-regulatory regions, with D. melanogaster exhibiting features of a faster and more productive promoter. We predicted that the interspecific variation in acclimation capacity of heat tolerance is explained by evolved variation in expression of the major group of heat shock proteins. To test this prediction, we compared basal levels of gene expression at different developmental temperatures within each of the two species. Furthermore, we explored the heat hardening dynamics by measuring the induction of gene expression during a ramping assay. The prediction of a stronger heat shock protein response in D. melanogaster as compared to D. subobscura was confirmed for both long-term acclimation and short-term hardening. For D. melanogaster the upregulation with temperature ramping ranged from less than two fold (hsp26) to 2500 fold (hsp70A) increase. In all cases induction in D. melanogaster exceeded that of D. subobscura homologs. These differences correlate with structural differences in the regulatory regions of hsp70, and might explain differences in acclimation capacity among species. Finally, in D. melanogaster we found an indication of an inverse relationship between basal and induced levels of hsp70A and hsp83 expression, suggesting a divergent role for thermal adaptation of these genes at benign and stressful temperatures, respectively.
在更高的驯化温度下,黑腹果蝇的耐热性会增加,但在暗腹果蝇中则不会。这两个物种代表了果蝇的 Sophophora 亚属的不同谱系,具有截然不同的热带非洲和温带古北地区的进化历史。黑腹果蝇有 5 个诱导型 hsp70 基因分布在两个簇中,分别命名为 A(有两个拷贝)和 B(三个拷贝),而暗腹果蝇只有两个拷贝,排列方式类似于黑腹果蝇的 A 簇。这两个物种的 hsp70 基因在其顺式调控区也存在差异,黑腹果蝇表现出更快、更有效的启动子特征。我们预测,耐热性驯化能力的种间差异是由主要热休克蛋白表达的进化变异所解释的。为了验证这一预测,我们比较了两个物种在不同发育温度下的基础基因表达水平。此外,我们通过测量在升温试验中基因表达的诱导,探索了热硬化动力学。与暗腹果蝇相比,黑腹果蝇的热休克蛋白反应更强的预测得到了证实,无论是在长期驯化还是短期硬化过程中都是如此。对于黑腹果蝇,随着温度的升高,基因表达的上调幅度从不到两倍(hsp26)到 2500 倍(hsp70A)不等。在所有情况下,黑腹果蝇的诱导都超过了暗腹果蝇同源物。这些差异与 hsp70 调控区的结构差异相关,可能解释了物种间驯化能力的差异。最后,我们在黑腹果蝇中发现了 hsp70A 和 hsp83 表达的基础水平和诱导水平之间存在负相关的迹象,这表明这些基因在良性和应激温度下的热适应作用存在分歧。