Hamid Ahmed M, Prabhakaran Aneesh, Garimella Sandilya V B, Ibrahim Yehia M, Smith Richard D
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States.
Int J Mass Spectrom. 2018 Jul;430:8-13. doi: 10.1016/j.ijms.2018.03.006. Epub 2018 Mar 26.
Ion mobility (IM) is rapidly gaining attention for the separation and analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM separations have limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. Both of these can be readily obtained in structures for lossless ion manipulations (SLIM), which are fabricated from arrays of electrodes patterned on two parallel surfaces where potentials are applied to generate appropriate electric fields between the surfaces. Here we have investigated the relationship between the primary SLIM variables, such as electrode dimensions, inter-surface gap, and the applied TW voltages, that directly impact the fields experienced by ions. Ion trajectory simulations and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric fields on IM resolution. The variables explored impact both ion confinement and the observed IM resolution using SLIM modules.
由于能够区分离子的形状,离子淌度(IM)在生物分子的分离和分析方面正迅速受到关注。然而,传统的恒定电场漂移管IM分离的分辨能力有限,受到路径长度和最大施加电压的实际限制。在IM中采用行波(TW)消除了后一个限制,允许使用更长的路径长度实现更高的分辨率。这两者都可以在无损离子操纵结构(SLIM)中轻松实现,SLIM由图案化在两个平行表面上的电极阵列制成,在表面之间施加电位以产生合适的电场。在这里,我们研究了直接影响离子所经历电场的主要SLIM变量之间的关系,例如电极尺寸、表面间间隙和施加的TW电压。离子轨迹模拟和理论计算已被用于理解SLIM几何形状和有效电场对IM分辨率的依赖性。所探索的变量既影响离子限制,也影响使用SLIM模块观察到的IM分辨率。