Suppr超能文献

基于行波结构的无损离子操纵(SLIM)中离子迁移分离应用场的表征。

Characterization of applied fields for ion mobility separations in traveling wave based structures for lossless ion manipulations (SLIM).

作者信息

Hamid Ahmed M, Prabhakaran Aneesh, Garimella Sandilya V B, Ibrahim Yehia M, Smith Richard D

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States.

出版信息

Int J Mass Spectrom. 2018 Jul;430:8-13. doi: 10.1016/j.ijms.2018.03.006. Epub 2018 Mar 26.

Abstract

Ion mobility (IM) is rapidly gaining attention for the separation and analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM separations have limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. Both of these can be readily obtained in structures for lossless ion manipulations (SLIM), which are fabricated from arrays of electrodes patterned on two parallel surfaces where potentials are applied to generate appropriate electric fields between the surfaces. Here we have investigated the relationship between the primary SLIM variables, such as electrode dimensions, inter-surface gap, and the applied TW voltages, that directly impact the fields experienced by ions. Ion trajectory simulations and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric fields on IM resolution. The variables explored impact both ion confinement and the observed IM resolution using SLIM modules.

摘要

由于能够区分离子的形状,离子淌度(IM)在生物分子的分离和分析方面正迅速受到关注。然而,传统的恒定电场漂移管IM分离的分辨能力有限,受到路径长度和最大施加电压的实际限制。在IM中采用行波(TW)消除了后一个限制,允许使用更长的路径长度实现更高的分辨率。这两者都可以在无损离子操纵结构(SLIM)中轻松实现,SLIM由图案化在两个平行表面上的电极阵列制成,在表面之间施加电位以产生合适的电场。在这里,我们研究了直接影响离子所经历电场的主要SLIM变量之间的关系,例如电极尺寸、表面间间隙和施加的TW电压。离子轨迹模拟和理论计算已被用于理解SLIM几何形状和有效电场对IM分辨率的依赖性。所探索的变量既影响离子限制,也影响使用SLIM模块观察到的IM分辨率。

相似文献

3
Dual Polarity Ion Confinement and Mobility Separations.双极性离子限制与迁移率分离
J Am Soc Mass Spectrom. 2019 Jun;30(6):967-976. doi: 10.1007/s13361-019-02138-1. Epub 2019 Mar 4.

引用本文的文献

5
Dual Polarity Ion Confinement and Mobility Separations.双极性离子限制与迁移率分离
J Am Soc Mass Spectrom. 2019 Jun;30(6):967-976. doi: 10.1007/s13361-019-02138-1. Epub 2019 Mar 4.
6
Recommendations for reporting ion mobility Mass Spectrometry measurements.离子淌度质谱测量报告的建议。
Mass Spectrom Rev. 2019 May;38(3):291-320. doi: 10.1002/mas.21585. Epub 2019 Feb 1.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验