Suppr超能文献

预测转移性直肠癌患者的总生存期:一种机器学习方法。

Predicting Overall Survival in Patients with Metastatic Rectal Cancer: a Machine Learning Approach.

机构信息

Department of Surgery, University of California San Diego, San Diego, CA, USA.

, San Diego, USA.

出版信息

J Gastrointest Surg. 2020 May;24(5):1165-1172. doi: 10.1007/s11605-019-04373-z. Epub 2019 Aug 29.

Abstract

BACKGROUND

A significant proportion of patients with rectal cancer will present with synchronous metastasis at the time of diagnosis. Overall survival (OS) for these patients are highly variable and previous attempts to build predictive models often have low predictive power, with concordance indexes (c-index) less than 0.70.

METHODS

Using the National Cancer Database (2010-2014), we identified patients with synchronous metastatic rectal cancer. The data was split into a training dataset (diagnosis years 2010-2012), which was used to build the machine learning model, and a testing dataset (diagnosis years 2013-2014), which was used to externally validate the model. A nomogram predicting 3-year OS was created using Cox proportional hazard regression with lasso penalization. Predictors were selected based on clinical significance and availability in NCDB. Performance of the machine learning model was assessed by c-index.

RESULTS

A total of 4098 and 3107 patients were used to construct and validate the nomogram, respectively. Internally validated c-indexes at 1, 2, and 3 years were 0.816 (95% CI 0.813-0.818), 0.789 (95% CI 0.786-0.790), and 0.778 (95% CI 0.775-0.780), respectively. External validated c-indexes at 1, 2, and 3 years were 0.811, 0.779, and 0.778, respectively.

CONCLUSIONS

There is wide variability in the OS for patients with metastatic rectal cancer, making accurate predictions difficult. However, using machine learning techniques, more accurate models can be built. This will aid patients and clinicians in setting expectations and making clinical decisions in this group of challenging patients.

摘要

背景

相当一部分直肠癌患者在诊断时即存在同步转移。这些患者的总体生存率(OS)差异很大,先前建立预测模型的尝试往往预测能力较低,一致性指数(c-index)小于 0.70。

方法

我们使用国家癌症数据库(2010-2014 年),确定了患有同步转移性直肠癌的患者。将数据分为训练数据集(诊断年份 2010-2012 年),用于构建机器学习模型,以及测试数据集(诊断年份 2013-2014 年),用于外部验证模型。使用带有lasso 惩罚的 Cox 比例风险回归创建预测 3 年 OS 的列线图。基于临床意义和 NCDB 的可用性选择预测因子。使用 C 指数评估机器学习模型的性能。

结果

共使用 4098 例和 3107 例患者分别构建和验证列线图。内部验证的 1 年、2 年和 3 年 C 指数分别为 0.816(95%CI 0.813-0.818)、0.789(95%CI 0.786-0.790)和 0.778(95%CI 0.775-0.780)。外部验证的 1 年、2 年和 3 年 C 指数分别为 0.811、0.779 和 0.778。

结论

转移性直肠癌患者的 OS 差异很大,因此难以进行准确预测。但是,使用机器学习技术可以构建更准确的模型。这将有助于患者和临床医生在这组具有挑战性的患者中设定预期并做出临床决策。

相似文献

引用本文的文献

本文引用的文献

2
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
6
Nomograms for colorectal cancer: A systematic review.结直肠癌列线图:一项系统评价。
World J Gastroenterol. 2015 Nov 7;21(41):11877-86. doi: 10.3748/wjg.v21.i41.11877.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验