Suppr超能文献

脑龄预测:发育中人类大脑的皮质和皮质下形状协变。

Brain age prediction: Cortical and subcortical shape covariation in the developing human brain.

机构信息

Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, 10016, USA; Center of Alcohol and Substance Use Studies, Department of Applied Psychology, Rutgers University, Piscataway, NJ 08854, USA.

MATTER Lab, Child Mind Institute, New York, NY, 10022, USA.

出版信息

Neuroimage. 2019 Nov 15;202:116149. doi: 10.1016/j.neuroimage.2019.116149. Epub 2019 Aug 30.

Abstract

Cortical development is characterized by distinct spatial and temporal patterns of maturational changes across various cortical shape measures. There is a growing interest in summarizing complex developmental patterns into a single index, which can be used to characterize an individual's brain age. We conducted this study with two primary aims. First, we sought to quantify covariation patterns for a variety of cortical shape measures, including cortical thickness, gray matter volume, surface area, mean curvature, and travel depth, as well as white matter volume, and subcortical gray matter volume. We examined these measures in a sample of 869 participants aged 5-18 from the Healthy Brain Network (HBN) neurodevelopmental cohort using the Joint and Individual Variation Explained (Lock et al., 2013) method. We validated our results in an independent dataset from the Nathan Kline Institute - Rockland Sample (NKI-RS; N = 210) and found remarkable consistency for some covariation patterns. Second, we assessed whether covariation patterns in the brain can be used to accurately predict a person's chronological age. Using ridge regression, we showed that covariation patterns can predict chronological age with high accuracy, reflected by our ability to cross-validate our model in an independent sample with a correlation coefficient of 0.84 between chronologic and predicted age. These covariation patterns also predicted sex with high accuracy (AUC = 0.85), and explained a substantial portion of variation in full scale intelligence quotient (R = 0.10). In summary, we found significant covariation across different cortical shape measures and subcortical gray matter volumes. In addition, each shape measure exhibited distinct covariations that could not be accounted for by other shape measures. These covariation patterns accurately predicted chronological age, sex and general cognitive ability. In a subset of NKI-RS, test-retest (<1 month apart, N = 120) and longitudinal scans (1.22 ± 0.29 years apart, N = 77) were available, allowing us to demonstrate high reliability for the prediction models obtained and the ability to detect subtle differences in the longitudinal scan interval among participants (median and median absolute deviation of absolute differences between predicted age difference and real age difference = 0.53 ± 0.47 years, r = 0.24, p-value = 0.04).

摘要

皮质发育的特点是在各种皮质形状测量中存在独特的时空成熟变化模式。人们越来越感兴趣的是将复杂的发育模式总结为一个单一的指标,这个指标可以用来描述个体的大脑年龄。我们进行这项研究有两个主要目的。首先,我们试图量化多种皮质形状测量值的协变模式,包括皮质厚度、灰质体积、表面积、平均曲率和行程深度,以及白质体积和皮质下灰质体积。我们使用 Joint and Individual Variation Explained(Lock 等人,2013)方法,在健康大脑网络(HBN)神经发育队列的 869 名 5-18 岁的参与者样本中检查了这些测量值。我们在来自 Nathan Kline Institute - Rockland Sample(NKI-RS;N=210)的独立数据集上验证了我们的结果,并发现一些协变模式非常一致。其次,我们评估了大脑中的协变模式是否可以准确预测一个人的实际年龄。使用脊回归,我们表明,协变模式可以非常准确地预测实际年龄,我们在独立样本中的交叉验证模型的相关系数为 0.84,实际年龄和预测年龄之间的相关性很高。这些协变模式也可以非常准确地预测性别(AUC=0.85),并解释了全量表智商的大部分变化(R=0.10)。总之,我们发现不同皮质形状测量值和皮质下灰质体积之间存在显著的协变。此外,每种形状测量值都表现出独特的协变,无法用其他形状测量值来解释。这些协变模式可以准确地预测实际年龄、性别和一般认知能力。在 NKI-RS 的一个子集中,测试-重测(相隔不到 1 个月,N=120)和纵向扫描(相隔 1.22±0.29 年,N=77)可用,这使我们能够证明获得的预测模型的高可靠性,以及检测参与者之间的纵向扫描间隔细微差异的能力(预测年龄差异与实际年龄差异之间的绝对差异的中位数和中位数绝对偏差=0.53±0.47 年,r=0.24,p 值=0.04)。

相似文献

1
Brain age prediction: Cortical and subcortical shape covariation in the developing human brain.
Neuroimage. 2019 Nov 15;202:116149. doi: 10.1016/j.neuroimage.2019.116149. Epub 2019 Aug 30.
2
Cortical and subcortical T1 white/gray contrast, chronological age, and cognitive performance.
Neuroimage. 2019 Aug 1;196:276-288. doi: 10.1016/j.neuroimage.2019.04.022. Epub 2019 Apr 12.
3
Brain anatomical covariation patterns linked to binge drinking and age at first full drink.
Neuroimage Clin. 2021;29:102529. doi: 10.1016/j.nicl.2020.102529. Epub 2020 Dec 8.
4
T1 white/gray contrast as a predictor of chronological age, and an index of cognitive performance.
Neuroimage. 2018 Jun;173:341-350. doi: 10.1016/j.neuroimage.2018.02.050. Epub 2018 Mar 1.
5
Test-retest reliability and sample size estimates after MRI scanner relocation.
Neuroimage. 2020 May 1;211:116608. doi: 10.1016/j.neuroimage.2020.116608. Epub 2020 Feb 4.
6
Structural brain development between childhood and adulthood: Convergence across four longitudinal samples.
Neuroimage. 2016 Nov 1;141:273-281. doi: 10.1016/j.neuroimage.2016.07.044. Epub 2016 Jul 22.
7
Inter-individual variability in structural brain development from late childhood to young adulthood.
Neuroimage. 2021 Nov 15;242:118450. doi: 10.1016/j.neuroimage.2021.118450. Epub 2021 Aug 3.
8
Mapping the neuroanatomical impact of very preterm birth across childhood.
Hum Brain Mapp. 2020 Mar;41(4):892-905. doi: 10.1002/hbm.24847. Epub 2019 Nov 5.
10
Brain structural covariation linked to screen media activity and externalizing behaviors in children.
J Behav Addict. 2022 Jun 30;11(2):417-426. doi: 10.1556/2006.2022.00044. Print 2022 Jul 13.

引用本文的文献

1
The contributions of brain structural and functional variance in predicting age, sex and treatment.
Neuroimage Rep. 2021 Jun 13;1(2):100024. doi: 10.1016/j.ynirp.2021.100024. eCollection 2021 Jun.
2
4
Relative brain age is associated with socioeconomic status and anxiety/depression problems in youth.
Dev Psychol. 2024 Jan;60(1):199-209. doi: 10.1037/dev0001593. Epub 2023 Sep 25.
5
Brain age prediction across the human lifespan using multimodal MRI data.
Geroscience. 2024 Feb;46(1):1-20. doi: 10.1007/s11357-023-00924-0. Epub 2023 Sep 21.
7
Brain structural co-development is associated with internalizing symptoms two years later in the ABCD cohort.
J Behav Addict. 2023 Mar 20;12(1):80-93. doi: 10.1556/2006.2023.00006. Print 2023 Mar 30.
9
DeepParcellation: A novel deep learning method for robust brain magnetic resonance imaging parcellation in older East Asians.
Front Aging Neurosci. 2022 Dec 9;14:1027857. doi: 10.3389/fnagi.2022.1027857. eCollection 2022.
10
Interpretive JIVE: Connections with CCA and an application to brain connectivity.
Front Neurosci. 2022 Oct 14;16:969510. doi: 10.3389/fnins.2022.969510. eCollection 2022.

本文引用的文献

1
Sex differences in the developing brain: insights from multimodal neuroimaging.
Neuropsychopharmacology. 2019 Jan;44(1):71-85. doi: 10.1038/s41386-018-0111-z. Epub 2018 Jun 6.
2
Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants.
Cereb Cortex. 2018 Aug 1;28(8):2959-2975. doi: 10.1093/cercor/bhy109.
3
T1 white/gray contrast as a predictor of chronological age, and an index of cognitive performance.
Neuroimage. 2018 Jun;173:341-350. doi: 10.1016/j.neuroimage.2018.02.050. Epub 2018 Mar 1.
4
Morphometric Similarity Networks Detect Microscale Cortical Organization and Predict Inter-Individual Cognitive Variation.
Neuron. 2018 Jan 3;97(1):231-247.e7. doi: 10.1016/j.neuron.2017.11.039. Epub 2017 Dec 21.
6
Inference in the age of big data: Future perspectives on neuroscience.
Neuroimage. 2017 Jul 15;155:549-564. doi: 10.1016/j.neuroimage.2017.04.061. Epub 2017 Apr 27.
7
Quantifying cortical development in typically developing toddlers and young children, 1-6 years of age.
Neuroimage. 2017 Jun;153:246-261. doi: 10.1016/j.neuroimage.2017.04.010. Epub 2017 Apr 6.
8
JIVE integration of imaging and behavioral data.
Neuroimage. 2017 May 15;152:38-49. doi: 10.1016/j.neuroimage.2017.02.072. Epub 2017 Feb 27.
10
Mindboggling morphometry of human brains.
PLoS Comput Biol. 2017 Feb 23;13(2):e1005350. doi: 10.1371/journal.pcbi.1005350. eCollection 2017 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验