School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China.
J Neural Eng. 2020 Jan 6;17(1):016025. doi: 10.1088/1741-2552/ab405f.
Electroencephalography (EEG) motor imagery classification has been widely used in healthcare applications such as mobile assistive robots and post-stroke rehabilitation. Recently, EEG motor imagery classification methods based on convolutional neural networks (CNNs) have been proposed and have achieved relatively high classification accuracy. However, these methods use single convolution scale in the CNN, while the best convolution scale differs from subject to subject. This limits the classification accuracy. Another issue is that the classification accuracy degrades when training data is limited.
To address these issues, we have proposed a hybrid-scale CNN architecture with a data augmentation method for EEG motor imagery classification.
Compared with several state-of-the-art methods, the proposed method achieves an average classification accuracy of 91.57% and 87.6% on two commonly used datasets, which outperforms several state-of-the-art EEG motor imagery classification methods.
The proposed method effectively addresses the issues of existing CNN-based EEG motor imagery classification methods and improves the classification accuracy.
脑电(EEG)运动想象分类已广泛应用于移动辅助机器人和中风后康复等医疗保健应用中。最近,提出了基于卷积神经网络(CNN)的 EEG 运动想象分类方法,这些方法取得了相对较高的分类准确性。然而,这些方法在 CNN 中使用单一卷积尺度,而最佳卷积尺度因个体而异。这限制了分类的准确性。另一个问题是,当训练数据有限时,分类准确性会下降。
为了解决这些问题,我们提出了一种具有数据增强方法的混合尺度 CNN 架构,用于 EEG 运动想象分类。
与几种最先进的方法相比,所提出的方法在两个常用数据集上的平均分类准确率分别为 91.57%和 87.6%,优于几种最先进的 EEG 运动想象分类方法。
所提出的方法有效地解决了现有的基于 CNN 的 EEG 运动想象分类方法的问题,并提高了分类准确性。