Ma Yahong, Huang Zhentao, Yang Yuyao, Chen Zuowen, Dong Qi, Zhang Shanwen, Li Yuan
Xi'an Key Laboratory of High Precision Industrial Intelligent Vision Measurement Technology, School of Electronic Information, Xijing University, Xi'an 710123, China.
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 710003, China.
Biomimetics (Basel). 2025 Mar 13;10(3):178. doi: 10.3390/biomimetics10030178.
Emotional states play a crucial role in shaping decision-making and social interactions, with sentiment analysis becoming an essential technology in human-computer emotional engagement, garnering increasing interest in artificial intelligence research. In EEG-based emotion analysis, the main challenges are feature extraction and classifier design, making the extraction of spatiotemporal information from EEG signals vital for effective emotion classification. Current methods largely depend on machine learning with manual feature extraction, while deep learning offers the advantage of automatic feature extraction and classification. Nonetheless, many deep learning approaches still necessitate manual preprocessing, which hampers accuracy and convenience. This paper introduces a novel deep learning technique that integrates multi-scale convolution and bidirectional long short-term memory networks with an attention mechanism for automatic EEG feature extraction and classification. By using raw EEG data, the method applies multi-scale convolutional neural networks and bidirectional long short-term memory networks to extract and merge features, selects key features via an attention mechanism, and classifies emotional EEG signals through a fully connected layer. The proposed model was evaluated on the SEED dataset for emotion classification. Experimental results demonstrate that this method effectively classifies EEG-based emotions, achieving classification accuracies of 99.44% for the three-class task and 99.85% for the four-class task in single validation, with average 10-fold-cross-validation accuracies of 99.49% and 99.70%, respectively. These findings suggest that the MSBiLSTM-Attention model is a powerful approach for emotion recognition.
情绪状态在塑造决策和社会互动方面起着至关重要的作用,情感分析已成为人机情感交互中的一项关键技术,在人工智能研究中引起了越来越多的关注。在基于脑电图(EEG)的情感分析中,主要挑战在于特征提取和分类器设计,因此从EEG信号中提取时空信息对于有效的情感分类至关重要。当前方法很大程度上依赖于人工特征提取的机器学习,而深度学习具有自动特征提取和分类的优势。尽管如此,许多深度学习方法仍然需要人工预处理,这影响了准确性和便利性。本文介绍了一种新颖的深度学习技术,该技术将多尺度卷积和双向长短期记忆网络与注意力机制相结合,用于EEG特征的自动提取和分类。该方法使用原始EEG数据,应用多尺度卷积神经网络和双向长短期记忆网络来提取和合并特征,通过注意力机制选择关键特征,并通过全连接层对情感EEG信号进行分类。所提出的模型在SEED数据集上进行了情感分类评估。实验结果表明,该方法能有效对基于EEG的情感进行分类,在单验证中,三类任务的分类准确率达到99.44%,四类任务的分类准确率达到99.85%,10倍交叉验证的平均准确率分别为99.49%和99.70%。这些发现表明,MSBiLSTM-注意力模型是一种强大的情感识别方法。