Chattopadhyay Trina, Lu Chun-Hao, Chao Yi-Ping, Wang Chiao-Yin, Tai Dar-In, Lai Ming-Wei, Zhou Zhuhuang, Tsui Po-Hsiang
Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan.
Med Biol Eng Comput. 2025 Apr 21. doi: 10.1007/s11517-025-03361-7.
Nonalcoholic steatohepatitis (NASH) is a contributing factor to liver cancer, with ultrasound B-mode imaging as the first-line diagnostic tool. This study applied deep learning to ultrasound B-scan images for NASH detection and introduced an ultrasound-specific data augmentation (USDA) technique with a dual-branch global-local feature fusion architecture (DG-LFFA) to improve model performance and adaptability across imaging conditions. A total of 137 participants were included. Ultrasound images underwent data augmentation (rotation and USDA) for training and testing convolutional neural networks-AlexNet, Inception V3, VGG16, VGG19, ResNet50, and DenseNet201. Gradient-weighted class activation mapping (Grad-CAM) analyzed model attention patterns, guiding the selection of the optimal backbone for DG-LFFA implementation. The models achieved testing accuracies of 0.81-0.83 with rotation-based data augmentation. Grad-CAM analysis showed that ResNet50 and DenseNet201 exhibited stronger liver attention. When USDA simulated datasets from different imaging conditions, DG-LFFA (based on ResNet50 and DenseNet201) improved accuracy (0.79 to 0.84 and 0.78 to 0.83), recall (0.72 to 0.81 and 0.70 to 0.78), and F1 score (0.80 to 0.84 for both models). In conclusion, deep architectures (ResNet50 and DenseNet201) enable focused analysis of liver regions for NASH detection. Under USDA-simulated imaging variations, the proposed DG-LFFA framework further improves diagnostic performance.
非酒精性脂肪性肝炎(NASH)是导致肝癌的一个因素,超声B模式成像作为一线诊断工具。本研究将深度学习应用于超声B扫描图像以检测NASH,并引入了一种具有双分支全局-局部特征融合架构(DG-LFFA)的超声特定数据增强(USDA)技术,以提高模型性能和在不同成像条件下的适应性。总共纳入了137名参与者。超声图像进行了数据增强(旋转和USDA),用于训练和测试卷积神经网络——AlexNet、Inception V3、VGG16、VGG19、ResNet50和DenseNet201。梯度加权类激活映射(Grad-CAM)分析了模型的注意力模式,指导为实施DG-LFFA选择最佳骨干网络。基于旋转的数据增强,这些模型的测试准确率达到了0.81 - 0.83。Grad-CAM分析表明,ResNet50和DenseNet201对肝脏的关注度更高。当USDA模拟不同成像条件下的数据集时,DG-LFFA(基于ResNet50和DenseNet