Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany.
Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany.
Pain. 2018 Jan;159(1):11-24. doi: 10.1097/j.pain.0000000000001008.
The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models.
对与疼痛相关的人类表型进行全面评估需要结合产生复杂高维数据的伤害性测量,这对生物信息学分析提出了挑战。在这项研究中,我们使用各种有害刺激物,对 82 名健康受试者的局部紫外线-B(UV-B)照射或辣椒素应用引起的皮肤热痛觉过敏的既定实验模型进行了评估。我们通过应用冷和机械刺激来扩展原始的热刺激,并使用临床建立的定量感觉测试(QST)电池(德国神经性疼痛研究网络)来评估过敏反应效应。这项研究提供了一个 246×10 大小的数据矩阵(82 名受试者在基线、UV-B 应用后和辣椒素应用后进行评估),涉及 10 个 QST 参数,我们使用机器学习技术对其进行了分析。我们观察到 9 个不同的 QST 参数中的过敏治疗有统计学上的显著影响。作为随机森林实施的有监督机器学习分析,然后是 ABC 分析,指出热痛觉阈值是受影响最相关的 QST 参数。然而,决策树分析表明 UV-B 还调节了对冷的敏感性。作为新兴的自组织映射实施的无监督机器学习技术,暗示了对辣椒素局部应用有反应的亚组。亚组之间的区别基于对压痛的敏感性,这可以归因于性别差异,女性比男性更敏感。因此,虽然 UV-B 和辣椒素具有热痛觉过敏的主要成分,但它们在健康受试者的 QST 参数模式上的影响不同,表明这些模型之间缺乏冗余。