Cell Therapy Process Development, Lonza Walkersville, Inc., Walkersville, Maryland.
Biotechnol Bioeng. 2019 Dec;116(12):3228-3241. doi: 10.1002/bit.27159. Epub 2019 Sep 23.
Induced pluripotent stem cells (iPSCs) hold great potential to generate novel, curative cell therapy products. However, current methods to generate these novel therapies lack scalability, are labor-intensive, require a large footprint, and are not suited to meet clinical and commercial demands. Therefore, it is necessary to develop scalable manufacturing processes to accommodate the generation of high-quality iPSC derivatives under controlled conditions. The current scale-up methods used in cell therapy processes are based on empirical, geometry-dependent methods that do not accurately represent the hydrodynamics of 3D bioreactors. These methods require multiple iterations of scale-up studies, resulting in increased development cost and time. Here we show a novel approach using computational fluid dynamics modeling to effectively scale-up cell therapy manufacturing processes in 3D bioreactors. Using a GMP-compatible iPSC line, we translated and scaled-up a small-scale cardiomyocyte differentiation process to a 3-L computer-controlled bioreactor in an efficient manner, showing comparability in both systems.
诱导多能干细胞(iPSCs)在生成新型、有治愈潜力的细胞治疗产品方面具有巨大潜力。然而,目前生成这些新型疗法的方法缺乏可扩展性,劳动强度大,需要较大的占地面积,并且不能满足临床和商业需求。因此,有必要开发可扩展的制造工艺,以在受控条件下生成高质量的 iPSC 衍生物。目前细胞治疗过程中使用的放大方法基于经验性的、依赖几何形状的方法,这些方法不能准确地表示 3D 生物反应器的流体动力学。这些方法需要多次迭代放大研究,导致开发成本和时间增加。在这里,我们展示了一种使用计算流体动力学建模的新方法,可有效地将细胞治疗制造过程放大到 3D 生物反应器中。使用符合 GMP 的 iPSC 系,我们以高效的方式将小规模的心肌细胞分化过程从一个小型生物反应器转化和放大到 3L 计算机控制的生物反应器中,两个系统的结果具有可比性。