Suppr超能文献

CEST-MRI 无创成像评估肾脏尿素处理

Noninvasive imaging of renal urea handling by CEST-MRI.

机构信息

Department of Bioengineering, University of California, Berkeley, Berkeley, California.

Berkeley Preclinical Imaging Core, University of California, Berkeley, Berkeley, California.

出版信息

Magn Reson Med. 2020 Mar;83(3):1034-1044. doi: 10.1002/mrm.27968. Epub 2019 Sep 4.

Abstract

PURPOSE

Renal function is characterized by concentration of urea for removal in urine. We tested urea as a CEST-MRI contrast agent for measurement of the concentrating capacity of distinct renal anatomical regions.

METHODS

The CEST contrast of urea was examined using phantoms with different concentrations and pH levels. Ten C57BL/6J mice were scanned twice at 7 T, once following intraperitoneal injection of 2M 150 µL urea and separately following an identical volume of saline. Kidneys were segmented into regions encompassing the cortex, outer medulla, and inner medulla and papilla to monitor spatially varying urea concentration. Z-spectra were acquired before and 20 minutes after injection, with dynamic scanning of urea handling performed in between via serial acquisition of CEST images acquired following saturation at +1 ppm.

RESULTS

Phantom experiments revealed concentration and pH-dependent CEST contrast of urea that was both acid- and base-catalyzed. Z-spectra acquired before injection showed significantly higher CEST contrast in the inner medulla and papilla (2.3% ± 1.9%) compared with the cortex (0.15% ± 0.75%, P = .011) and outer medulla (0.12% ± 0.58%, P = .008). Urea infusion increased CEST contrast in the inner medulla and papilla by 2.1% ± 1.9% (absolute), whereas saline infusion decreased CEST contrast by -0.5% ± 2.0% (absolute, P = .028 versus urea). Dynamic scanning revealed that thermal drift and diuretic status are confounding factors.

CONCLUSION

Urea CEST has a potential of monitoring renal function by capturing the spatially varying urea concentrating ability of the kidneys.

摘要

目的

肾功能的特点是通过尿液去除来浓缩尿素。我们测试了尿素作为 CEST-MRI 对比剂,用于测量不同肾脏解剖区域的浓缩能力。

方法

使用不同浓度和 pH 值的体模来检查尿素的 CEST 对比。在 7T 下对 10 只 C57BL/6J 小鼠进行了两次扫描,一次是在腹腔注射 2M 150µL 尿素后,另一次是在相同体积的生理盐水后。将肾脏分割成包含皮质、外髓质和内髓质以及乳头的区域,以监测空间变化的尿素浓度。在注射前和注射后 20 分钟采集 Z 谱,通过在 +1 ppm 处饱和后连续采集 CEST 图像来动态扫描尿素处理。

结果

体模实验显示,尿素的 CEST 对比与浓度和 pH 值有关,既有酸催化又有碱催化。注射前采集的 Z 谱显示,内髓质和乳头的 CEST 对比明显高于皮质(2.3%±1.9% 比 0.15%±0.75%,P=0.011)和外髓质(0.12%±0.58%,P=0.008)。尿素输注使内髓质和乳头的 CEST 对比增加了 2.1%±1.9%(绝对值),而生理盐水输注使 CEST 对比降低了-0.5%±2.0%(绝对值,P=0.028 与尿素相比)。动态扫描显示,热漂移和利尿状态是混杂因素。

结论

通过捕捉肾脏空间变化的尿素浓缩能力,尿素 CEST 具有监测肾功能的潜力。

相似文献

1
Noninvasive imaging of renal urea handling by CEST-MRI.
Magn Reson Med. 2020 Mar;83(3):1034-1044. doi: 10.1002/mrm.27968. Epub 2019 Sep 4.
2
Delayed urea differential enhancement CEST (dudeCEST)-MRI with T correction for monitoring renal urea handling.
Magn Reson Med. 2021 May;85(5):2791-2804. doi: 10.1002/mrm.28583. Epub 2020 Nov 12.
4
A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol.
Magn Reson Med. 2018 Mar;79(3):1553-1558. doi: 10.1002/mrm.26817. Epub 2017 Jul 7.
5
Noninvasive evaluation of renal pH homeostasis after ischemia reperfusion injury by CEST-MRI.
NMR Biomed. 2017 Jul;30(7). doi: 10.1002/nbm.3720. Epub 2017 Mar 29.
6
Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI.
Magn Reson Med. 2016 Nov;76(5):1531-1541. doi: 10.1002/mrm.26045. Epub 2015 Nov 26.
7
pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent.
Magn Reson Med. 2016 Jun;75(6):2432-41. doi: 10.1002/mrm.25844. Epub 2015 Jul 14.
8
Renal pH Mapping Using Chemical Exchange Saturation Transfer (CEST) MRI: Experimental Protocol.
Methods Mol Biol. 2021;2216:455-471. doi: 10.1007/978-1-0716-0978-1_27.
9
Renal pH Imaging Using Chemical Exchange Saturation Transfer (CEST) MRI: Basic Concept.
Methods Mol Biol. 2021;2216:241-256. doi: 10.1007/978-1-0716-0978-1_14.

引用本文的文献

3
Going Above and Beyond: Achieving High Contrast and Higher Offset through Carbon Dot-Based diaCEST MRI Contrast Agent.
Chem Biomed Imaging. 2025 Jan 28;3(2):123-131. doi: 10.1021/cbmi.4c00086. eCollection 2025 Feb 24.
7
Preparation of Hydrothermal Carbon Quantum Dots as a Contrast Amplifying Technique for the diaCEST MRI Contrast Agents.
ACS Omega. 2022 Sep 12;7(38):33934-33941. doi: 10.1021/acsomega.2c02911. eCollection 2022 Sep 27.

本文引用的文献

2
Possible artifacts in dynamic CEST MRI due to motion and field alterations.
J Magn Reson. 2019 Jan;298:16-22. doi: 10.1016/j.jmr.2018.11.002. Epub 2018 Nov 13.
3
Assessment of frequency drift on CEST MRI and dynamic correction: application to gagCEST at 7 T.
Magn Reson Med. 2019 Jan;81(1):573-582. doi: 10.1002/mrm.27367. Epub 2018 May 31.
5
Clinical applications of chemical exchange saturation transfer (CEST) MRI.
J Magn Reson Imaging. 2018 Jan;47(1):11-27. doi: 10.1002/jmri.25838. Epub 2017 Aug 9.
6
A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol.
Magn Reson Med. 2018 Mar;79(3):1553-1558. doi: 10.1002/mrm.26817. Epub 2017 Jul 7.
8
Noninvasive evaluation of renal pH homeostasis after ischemia reperfusion injury by CEST-MRI.
NMR Biomed. 2017 Jul;30(7). doi: 10.1002/nbm.3720. Epub 2017 Mar 29.
9
Generation and phenotypic analysis of mice lacking all urea transporters.
Kidney Int. 2017 Feb;91(2):338-351. doi: 10.1016/j.kint.2016.09.017. Epub 2016 Nov 30.
10
Chronic Kidney Disease.
Lancet. 2017 Mar 25;389(10075):1238-1252. doi: 10.1016/S0140-6736(16)32064-5. Epub 2016 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验