Paik Sang Hyun, Jin Gong Yong
J Korean Soc Radiol. 2024 Jul;85(4):714-726. doi: 10.3348/jksr.2024.0050. Epub 2024 Jul 30.
Researchers have developed various algorithms utilizing artificial intelligence (AI) to automatically and objectively diagnose patterns and extent of pulmonary emphysema or interstitial lung diseases on chest CT scans. Studies show that AI-based quantification of emphysema on chest CT scans reveals a connection between an increase in the relative percentage of emphysema and a decline in lung function. Notably, quantifying centrilobular emphysema has proven helpful in predicting clinical symptoms or mortality rates of chronic obstructive pulmonary disease. In the context of interstitial lung diseases, AI can classify the usual interstitial pneumonia pattern on CT scans into categories like normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation. This classification accuracy is comparable to chest radiologists (70%-80%). However, the results generated by AI are influenced by factors such as scan parameters, reconstruction algorithms, radiation doses, and the training data used to develop the AI. These limitations currently restrict the widespread adoption of AI for quantifying pulmonary emphysema and interstitial lung diseases in daily clinical practice. This paper will showcase the authors' experience using AI for diagnosing and quantifying emphysema and interstitial lung diseases through case studies. We will primarily focus on the advantages and limitations of AI for these two diseases.
研究人员已开发出各种利用人工智能(AI)的算法,以在胸部CT扫描中自动、客观地诊断肺气肿或间质性肺疾病的模式及范围。研究表明,基于人工智能对胸部CT扫描中的肺气肿进行量化显示,肺气肿相对百分比的增加与肺功能下降之间存在关联。值得注意的是,对小叶中心型肺气肿进行量化已被证明有助于预测慢性阻塞性肺疾病的临床症状或死亡率。在间质性肺疾病方面,人工智能可以将CT扫描上的普通间质性肺炎模式分类为正常、磨玻璃影、网状影、蜂窝状、肺气肿和实变等类别。这种分类准确性与胸部放射科医生相当(70%-80%)。然而,人工智能生成的结果会受到扫描参数、重建算法、辐射剂量以及用于开发人工智能的训练数据等因素的影响。目前,这些限制阻碍了人工智能在日常临床实践中广泛用于量化肺气肿和间质性肺疾病。本文将通过案例研究展示作者使用人工智能诊断和量化肺气肿及间质性肺疾病的经验。我们将主要关注人工智能在这两种疾病中的优势和局限性。