Suppr超能文献

深度学习神经网络在 LC-MS 光谱峰分类中的应用。

Deep Neural Networks for Classification of LC-MS Spectral Peaks.

机构信息

Smidt Heart Institute , Cedars-Sinai Medical Center , Los Angeles , California 90048 , United States.

出版信息

Anal Chem. 2019 Oct 1;91(19):12407-12413. doi: 10.1021/acs.analchem.9b02983. Epub 2019 Sep 19.

Abstract

Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics has emerged as a valuable tool for biological discovery, capable of assaying thousands of diverse chemical entities in a single biospecimen. Processing of nontargeted LC-MS spectral data requires identification and isolation of true spectral features from the random, false noise peaks that comprise a significant portion of total signals, using inexact peak selection algorithms and time-consuming visual inspection of data. To increase the fidelity and speed of data processing, herein we establish, optimize, and evaluate a machine learning pipeline employing deep neural networks as well as a simpler multiple logistic regression model for classification of spectral features from nontargeted LC-MS metabolomics data. Machine learning-based approaches were found to remove up to 90% of false peaks from complex nontargeted LC-MS data sets without reducing true positive signals and exhibit excellent reproducibility across multiple data sets. Application of machine learning for nontargeted LC-MS-based peak selection provides for robust and scalable peak classification and data filtering, enabling handling and processing of large scale, complex metabolomics data sets.

摘要

基于液相色谱-质谱联用(LC-MS)的代谢组学已成为生物发现的一种有价值的工具,能够在单个生物样本中测定数千种不同的化学物质。非靶向 LC-MS 光谱数据的处理需要从构成总信号的随机、虚假噪声峰中识别和分离真实的光谱特征,使用不精确的峰选择算法和耗时的数据分析可视化检查。为了提高数据处理的准确性和速度,我们在此建立、优化和评估了一个机器学习管道,该管道采用深度神经网络以及更简单的多逻辑回归模型,用于分类非靶向 LC-MS 代谢组学数据中的光谱特征。基于机器学习的方法被发现可以从复杂的非靶向 LC-MS 数据集去除高达 90%的虚假峰,而不会减少真实的阳性信号,并在多个数据集之间表现出出色的重现性。将机器学习应用于非靶向 LC-MS 峰选择,可以实现强大且可扩展的峰分类和数据过滤,从而能够处理和处理大规模、复杂的代谢组学数据集。

相似文献

1
Deep Neural Networks for Classification of LC-MS Spectral Peaks.深度学习神经网络在 LC-MS 光谱峰分类中的应用。
Anal Chem. 2019 Oct 1;91(19):12407-12413. doi: 10.1021/acs.analchem.9b02983. Epub 2019 Sep 19.
3
Deep Learning-Assisted Peak Curation for Large-Scale LC-MS Metabolomics.深度学习辅助的大规模 LC-MS 代谢组学峰提取。
Anal Chem. 2022 Mar 29;94(12):4930-4937. doi: 10.1021/acs.analchem.1c02220. Epub 2022 Mar 15.
7
Cleaning of Chimeric MS/MS Spectra for LC-MS/MS-Based Metabolomics.基于 LC-MS/MS 的代谢组学的嵌合 MS/MS 谱图清洗。
Anal Chem. 2023 Sep 5;95(35):13018-13028. doi: 10.1021/acs.analchem.3c00736. Epub 2023 Aug 21.

引用本文的文献

本文引用的文献

1
Using deep learning to evaluate peaks in chromatographic data.使用深度学习评估色谱数据中的峰。
Talanta. 2019 Nov 1;204:255-260. doi: 10.1016/j.talanta.2019.05.053. Epub 2019 May 22.
3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验