Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
J Virol. 2019 Oct 29;93(22). doi: 10.1128/JVI.01115-19. Print 2019 Nov 15.
The stability of icosahedral viruses is crucial for protecting the viral genome during transit; however, successful infection requires eventual disassembly of the capsid. A comprehensive understanding of how stable, uniform icosahedrons disassemble remains elusive, mainly due to the complexities involved in isolating transient intermediates. We utilized incremental heating to systematically characterize the disassembly pathway of a model nonenveloped virus and identified an intriguing link between virus maturation and disassembly. Further, we isolated and characterized two intermediates by cryo-electron microscopy and three-dimensional reconstruction, without imposing icosahedral symmetry. The first intermediate displayed a series of major, asymmetric alterations, whereas the second showed that the act of genome release, through the 2-fold axis, is actually confined to a small section on the capsid. Our study thus presents a comprehensive structural analysis of nonenveloped virus disassembly and emphasizes the asymmetric nature of programmed conformational changes. Disassembly or uncoating of an icosahedral capsid is a crucial step during infection by nonenveloped viruses. However, the dynamic and transient nature of the disassembly process makes it challenging to isolate intermediates in a temporal, stepwise manner for structural characterization. Using controlled, incremental heating, we isolated two disassembly intermediates: "eluted particles" and "puffed particles" of an insect nodavirus, Flock House virus (FHV). Cryo-electron microscopy and three-dimensional reconstruction of the FHV disassembly intermediates indicated that disassembly-related conformational alterations are minimally global and largely local, leading to asymmetry in the particle and eventual genome release without complete disintegration of the icosahedron.
二十面体病毒的稳定性对于在运输过程中保护病毒基因组至关重要;然而,成功的感染需要最终使衣壳解体。尽管人们对稳定、均匀的二十面体如何解体有了全面的了解,但由于涉及到分离瞬时中间体的复杂性,这仍然难以捉摸。我们利用逐步加热来系统地表征了一种模型非包膜病毒的解体途径,并发现了病毒成熟和解体之间的一个有趣联系。此外,我们通过低温电子显微镜和三维重建分离并表征了两个中间体,而不施加二十面体对称性。第一个中间体能显示一系列主要的、不对称的改变,而第二个中间体能显示基因组通过 2 倍轴释放的过程实际上局限于衣壳上的一小部分。因此,我们的研究对无包膜病毒的解体进行了全面的结构分析,并强调了程序化构象变化的不对称性质。非包膜病毒感染过程中的一个关键步骤是二十面体衣壳的解体或脱壳。然而,解体过程的动态和瞬态性质使得以时间顺序、逐步的方式分离中间体进行结构表征具有挑战性。我们使用受控的逐步加热,分离出两种解体中间体:昆虫核多角体病毒(FHV)的“洗脱颗粒”和“膨化颗粒”。FHV 解体中间体的低温电子显微镜和三维重建表明,与解体相关的构象改变基本上是局部的,而不是全局的,导致颗粒的不对称性,并最终在不破坏二十面体完整性的情况下释放基因组。