Suppr超能文献

用于 DNA 测序显微镜的计算框架。

A computational framework for DNA sequencing microscopy.

机构信息

Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.

Department of Computer Science, Aalto University, FI-00076 Aalto, Finland.

出版信息

Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19282-19287. doi: 10.1073/pnas.1821178116. Epub 2019 Sep 4.

Abstract

We describe a method whereby microscale spatial information such as the relative positions of biomolecules on a surface can be transferred to a sequence-based format and reconstructed into images without conventional optics. Barcoded DNA "polymerase colony" (polony) amplification techniques enable one to distinguish specific locations of a surface by their sequence. Image formation is based on pairwise fusion of uniquely tagged and spatially adjacent polonies. The network of polonies connected by shared borders forms a graph whose topology can be reconstructed from pairs of barcodes fused during a polony cross-linking phase, the sequences of which are determined by recovery from the surface and next-generation (next-gen) sequencing. We developed a mathematical and computational framework for this principle called polony adjacency reconstruction for spatial inference and topology and show that Euclidean spatial data may be stored and transmitted in the form of graph topology. Images are formed by transferring molecular information from a surface of interest, which we demonstrated in silico by reconstructing images formed from stochastic transfer of hypothetical molecular markers. The theory developed here could serve as a basis for an automated, multiplexable, and potentially superresolution imaging method based purely on molecular information.

摘要

我们描述了一种方法,通过该方法可以将微观空间信息(例如表面上生物分子的相对位置)转换为基于序列的格式,并在无需传统光学的情况下重建为图像。带条码的 DNA“聚合酶菌落”(polony)扩增技术可通过序列来区分表面的特定位置。图像形成基于独特标记和空间相邻 polony 的成对融合。通过共享边界连接的 polony 网络形成一个图,该图的拓扑结构可以通过在 polony 交联阶段融合的一对条形码重建来重建,其序列通过从表面和下一代(next-gen)测序中恢复来确定。我们为此原理开发了一个数学和计算框架,称为用于空间推理和拓扑结构的 polony 邻接重建,并表明欧几里得空间数据可以以图拓扑的形式存储和传输。图像是通过从感兴趣的表面转移分子信息形成的,我们通过从假设的分子标记的随机转移中重建图像在计算机上进行了演示。这里开发的理论可以为一种基于纯分子信息的自动化、可多路复用和潜在的超分辨率成像方法提供基础。

相似文献

1
A computational framework for DNA sequencing microscopy.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19282-19287. doi: 10.1073/pnas.1821178116. Epub 2019 Sep 4.
3
Fluorescent in situ sequencing on polymerase colonies.
Anal Biochem. 2003 Sep 1;320(1):55-65. doi: 10.1016/s0003-2697(03)00291-4.
4
Image recovery from unknown network mechanisms for DNA sequencing-based microscopy.
Nanoscale. 2023 May 11;15(18):8153-8157. doi: 10.1039/d2nr05435c.
5
Insertion and deletion correcting DNA barcodes based on watermarks.
BMC Bioinformatics. 2015 Feb 18;16:50. doi: 10.1186/s12859-015-0482-7.
6
An error correction strategy for image reconstruction by DNA sequencing microscopy.
Nat Comput Sci. 2024 Feb;4(2):119-127. doi: 10.1038/s43588-023-00589-x. Epub 2024 Jan 22.
7
Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches.
BMC Bioinformatics. 2020 Apr 3;21(1):132. doi: 10.1186/s12859-020-3461-6.
8
End-to-End Optimization of High-Throughput DNA Sequencing.
J Comput Biol. 2016 Oct;23(10):789-800. doi: 10.1089/cmb.2015.0185. Epub 2016 Jul 7.
9
A computational method for estimating the PCR duplication rate in DNA and RNA-seq experiments.
BMC Bioinformatics. 2017 Mar 14;18(Suppl 3):43. doi: 10.1186/s12859-017-1471-9.
10
Development of Microsatellite Markers Using Next-Generation Sequencing.
Methods Mol Biol. 2021;2222:179-186. doi: 10.1007/978-1-0716-0997-2_11.

引用本文的文献

1
Scalable spatial transcriptomics through computational array reconstruction.
Nat Biotechnol. 2025 Apr 3. doi: 10.1038/s41587-025-02612-0.
2
Spatial transcriptomic imaging of an intact organism using volumetric DNA microscopy.
Nat Biotechnol. 2025 Mar 27. doi: 10.1038/s41587-025-02613-z.
3
Scalable imaging-free spatial genomics through computational reconstruction.
bioRxiv. 2024 Sep 16:2024.08.05.606465. doi: 10.1101/2024.08.05.606465.
4
Optics-free Spatial Genomics for Mapping Mouse Brain Aging.
bioRxiv. 2024 Aug 8:2024.08.06.606712. doi: 10.1101/2024.08.06.606712.
5
Optics-free reconstruction of 2D images via DNA barcode proximity graphs.
bioRxiv. 2024 Aug 8:2024.08.06.606834. doi: 10.1101/2024.08.06.606834.
6
Molecular pixelation: spatial proteomics of single cells by sequencing.
Nat Methods. 2024 Jun;21(6):1044-1052. doi: 10.1038/s41592-024-02268-9. Epub 2024 May 8.
7
Molecular robotic agents that survey molecular landscapes for information retrieval.
Nat Commun. 2024 Apr 17;15(1):3293. doi: 10.1038/s41467-024-46978-2.
8
An error correction strategy for image reconstruction by DNA sequencing microscopy.
Nat Comput Sci. 2024 Feb;4(2):119-127. doi: 10.1038/s43588-023-00589-x. Epub 2024 Jan 22.
9
Enablers and challenges of spatial omics, a melting pot of technologies.
Mol Syst Biol. 2023 Nov 9;19(11):e10571. doi: 10.15252/msb.202110571. Epub 2023 Oct 16.
10
Volumetric imaging of an intact organism by a distributed molecular network.
bioRxiv. 2023 Aug 14:2023.08.11.553025. doi: 10.1101/2023.08.11.553025.

本文引用的文献

1
Clonal rolling circle amplification for on-chip DNA cluster generation.
Biol Methods Protoc. 2017 May 12;2(1):bpx007. doi: 10.1093/biomethods/bpx007. eCollection 2017 Jan.
2
DNA Microscopy: Optics-free Spatio-genetic Imaging by a Stand-Alone Chemical Reaction.
Cell. 2019 Jun 27;178(1):229-241.e16. doi: 10.1016/j.cell.2019.05.019. Epub 2019 Jun 20.
3
Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution.
Science. 2019 Mar 29;363(6434):1463-1467. doi: 10.1126/science.aaw1219. Epub 2019 Mar 28.
4
Three-dimensional intact-tissue sequencing of single-cell transcriptional states.
Science. 2018 Jul 27;361(6400). doi: 10.1126/science.aat5691. Epub 2018 Jun 21.
5
Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy.
Sci Rep. 2018 Mar 19;8(1):4847. doi: 10.1038/s41598-018-22297-7.
6
The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing.
Science. 2017 Oct 6;358(6359):64-69. doi: 10.1126/science.aan6827.
7
A DNA nanoscope via auto-cycling proximity recording.
Nat Commun. 2017 Sep 25;8(1):696. doi: 10.1038/s41467-017-00542-3.
8
The embryo at single-cell transcriptome resolution.
Science. 2017 Oct 13;358(6360):194-199. doi: 10.1126/science.aan3235. Epub 2017 Aug 31.
9
Using high-throughput barcode sequencing to efficiently map connectomes.
Nucleic Acids Res. 2017 Jul 7;45(12):e115. doi: 10.1093/nar/gkx292.
10
Single-cell spatial reconstruction reveals global division of labour in the mammalian liver.
Nature. 2017 Feb 16;542(7641):352-356. doi: 10.1038/nature21065. Epub 2017 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验