Suppr超能文献

REVEL 和 BayesDel 在临床变异分类的计算元预测方面优于其他方法。

REVEL and BayesDel outperform other in silico meta-predictors for clinical variant classification.

机构信息

Ambry Genetics, 15 Argonaut, Aliso Viejo, CA, 92656, USA.

Divsion of Genetics and Genomics, University of California, Irvine, CA, 92697, USA.

出版信息

Sci Rep. 2019 Sep 4;9(1):12752. doi: 10.1038/s41598-019-49224-8.

Abstract

Many in silico predictors of genetic variant pathogenicity have been previously developed, but there is currently no standard application of these algorithms for variant assessment. Using 4,094 ClinVar-curated missense variants in clinically actionable genes, we evaluated the accuracy and yield of benign and deleterious evidence in 5 in silico meta-predictors, as well as agreement of SIFT and PolyPhen2, and report the derived thresholds for the best performing predictor(s). REVEL and BayesDel outperformed all other meta-predictors (CADD, MetaSVM, Eigen), with higher positive predictive value, comparable negative predictive value, higher yield, and greater overall prediction performance. Agreement of SIFT and PolyPhen2 resulted in slightly higher yield but lower overall prediction performance than REVEL or BayesDel. Our results support the use of gene-level rather than generalized thresholds, when gene-level thresholds can be estimated. Our results also support the use of 2-sided thresholds, which allow for uncertainty, rather than a single, binary cut-point for assigning benign and deleterious evidence. The gene-level 2-sided thresholds we derived for REVEL or BayesDel can be used to assess in silico evidence for missense variants in accordance with current classification guidelines.

摘要

许多用于预测遗传变异致病性的计算工具已经被开发出来,但目前还没有这些算法在变异评估中的标准应用。我们使用 4094 个 ClinVar 经过精心筛选的错义变异,这些变异位于具有临床可操作性的基因中,评估了 5 种计算综合预测因子中良性和有害证据的准确性和检出率,以及 SIFT 和 PolyPhen2 的一致性,并报告了最佳预测因子的衍生阈值。REVEL 和 BayesDel 的表现优于所有其他的综合预测因子(CADD、MetaSVM、Eigen),具有更高的阳性预测值、可比的阴性预测值、更高的检出率和更好的整体预测性能。SIFT 和 PolyPhen2 的一致性导致的检出率略高,但整体预测性能低于 REVEL 或 BayesDel。我们的研究结果支持在可以估计基因水平阈值的情况下使用基因水平而不是一般化的阈值。我们的研究结果还支持使用双边阈值,允许存在不确定性,而不是使用单一的二进制截断点来分配良性和有害证据。我们为 REVEL 或 BayesDel 推导的基因水平双边阈值可用于根据当前的分类指南评估错义变异的计算证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b3/6726608/b47706b1979c/41598_2019_49224_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验