Suppr超能文献

预测生活方式干预电子健康平台上的退出者:方法与预测因素分析

Predicting Dropouts From an Electronic Health Platform for Lifestyle Interventions: Analysis of Methods and Predictors.

作者信息

Pedersen Daniel Hansen, Mansourvar Marjan, Sortsø Camilla, Schmidt Thomas

机构信息

Liva Healthcare A/S, Copenhagen, Denmark.

Centre of Health Informatics and Technology, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark.

出版信息

J Med Internet Res. 2019 Sep 4;21(9):e13617. doi: 10.2196/13617.

Abstract

BACKGROUND

The increasing prevalence and economic impact of chronic diseases challenge health care systems globally. Digital solutions can potentially improve efficiency and quality of care, but these initiatives struggle with nonusage attrition. Machine learning methods have been proven to predict dropouts in other settings but lack implementation in health care.

OBJECTIVE

This study aimed to gain insight into the causes of attrition for patients in an electronic health (eHealth) intervention for chronic lifestyle diseases and evaluate if attrition can be predicted and consequently prevented. We aimed to build predictive models that can identify patients in a digital lifestyle intervention at high risk of dropout by analyzing several predictor variables applied in different models and to further assess the possibilities and impact of implementing such models into an eHealth platform.

METHODS

Data from 2684 patients using an eHealth platform were iteratively analyzed using logistic regression, decision trees, and random forest models. The dataset was split into a 79.99% (2147/2684) training and cross-validation set and a 20.0% (537/2684) holdout test set. Trends in activity patterns were analyzed to assess engagement over time. Development and implementation were performed iteratively with health coaches.

RESULTS

Patients in the test dataset were classified as dropouts with an 89% precision using a random forest model and 11 predictor variables. The most significant predictors were the provider of the intervention, 2 weeks inactivity, and the number of advices received from the health coach. Engagement in the platform dropped significantly leading up to the time of dropout.

CONCLUSIONS

Dropouts from eHealth lifestyle interventions can be predicted using various data mining methods. This can support health coaches in preventing attrition by receiving proactive warnings. The best performing predictive model was found to be the random forest.

摘要

背景

慢性病患病率的上升及其经济影响对全球医疗保健系统构成了挑战。数字解决方案有可能提高医疗效率和质量,但这些举措面临着用户流失的问题。机器学习方法已被证明可在其他场景中预测用户流失情况,但在医疗保健领域尚未得到应用。

目的

本研究旨在深入了解慢性生活方式疾病电子健康(eHealth)干预中患者流失的原因,并评估是否可以预测并预防流失。我们旨在构建预测模型,通过分析不同模型中应用的多个预测变量,识别数字生活方式干预中高辍学风险的患者,并进一步评估将此类模型应用于eHealth平台的可能性和影响。

方法

使用逻辑回归、决策树和随机森林模型对来自2684名使用eHealth平台患者的数据进行迭代分析。数据集被分为79.99%(2147/2684)的训练和交叉验证集以及20.0%(537/2684)的保留测试集。分析活动模式趋势以评估随时间的参与度。与健康教练进行迭代开发和实施。

结果

使用随机森林模型和11个预测变量,测试数据集中的患者被分类为流失,准确率为89%。最显著的预测因素是干预提供者、2周不活动以及从健康教练处收到的建议数量。在流失发生前,平台参与度显著下降。

结论

可以使用各种数据挖掘方法预测eHealth生活方式干预中的流失情况。这可以支持健康教练通过接收主动警告来预防流失。发现表现最佳的预测模型是随机森林。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb48/6753691/9b1a5a0da323/jmir_v21i9e13617_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验