Suppr超能文献

从电子健康记录中的临床记录中提取以患者为中心的结果:根治性前列腺切除术后尿失禁的评估

Extracting Patient-Centered Outcomes from Clinical Notes in Electronic Health Records: Assessment of Urinary Incontinence After Radical Prostatectomy.

作者信息

Gori Davide, Banerjee Imon, Chung Benjamin I, Ferrari Michelle, Rucci Paola, Blayney Douglas W, Brooks James D, Hernandez-Boussard Tina

机构信息

University of Bologna, IT.

Stanford University, US.

出版信息

EGEMS (Wash DC). 2019 Aug 20;7(1):43. doi: 10.5334/egems.297.

Abstract

OBJECTIVE

To assess documentation of urinary incontinence (UI) in prostatectomy patients using unstructured clinical notes from Electronic Health Records (EHRs).

METHODS

We developed a weakly-supervised natural language processing tool to extract assessments, as recorded in unstructured text notes, of UI before and after radical prostatectomy in a single academic practice across multiple clinicians. Validation was carried out using a subset of patients who completed EPIC-26 surveys before and after surgery. The prevalence of UI as assessed by EHR and EPIC-26 was compared using repeated-measures ANOVA. The agreement of reported UI between EHR and EPIC-26 was evaluated using Cohen's Kappa coefficient.

RESULTS

A total of 4870 patients and 716 surveys were included. Preoperative prevalence of UI was 12.7 percent. Postoperative prevalence was 71.8 percent at 3 months, 50.2 percent at 6 months and 34.4 and 41.8 at 12 and 24 months, respectively. Similar rates were recorded by physicians in the EHR, particularly for early follow-up. For all time points, the agreement between EPIC-26 and the EHR was moderate (all p < 0.001) and ranged from 86.7 percent agreement at baseline (Kappa = 0.48) to 76.4 percent agreement at 24 months postoperative (Kappa = 0.047).

CONCLUSIONS

We have developed a tool to assess documentation of UI after prostatectomy using EHR clinical notes. Our results suggest such a tool can facilitate unbiased measurement of important PCOs using real-word data, which are routinely recorded in EHR unstructured clinician notes. Integrating PCO information into clinical decision support can help guide shared treatment decisions and promote patient-valued care.

摘要

目的

利用电子健康记录(EHR)中的非结构化临床记录,评估前列腺切除患者尿失禁(UI)的记录情况。

方法

我们开发了一种弱监督自然语言处理工具,以提取在多个临床医生的单一学术实践中,非结构化文本记录里根治性前列腺切除术前和术后UI的评估情况。使用一部分术前和术后完成EPIC - 26调查的患者进行验证。采用重复测量方差分析比较EHR和EPIC - 26评估的UI患病率。使用Cohen's Kappa系数评估EHR和EPIC - 26报告的UI之间的一致性。

结果

共纳入4870例患者和716份调查。术前UI患病率为12.7%。术后3个月患病率为71.8%,6个月为50.2%,12个月和24个月分别为34.4%和41.8%。EHR中的医生记录了相似的比例,尤其是在早期随访中。在所有时间点,EPIC - 26与EHR之间的一致性为中等(所有p < 0.001),范围从基线时的86.7%一致(Kappa = 0.48)到术后24个月的76.4%一致(Kappa = 0.047)。

结论

我们开发了一种工具,用于使用EHR临床记录评估前列腺切除术后UI的记录情况。我们的结果表明,这样的工具可以利用真实世界数据促进对重要患者护理结局(PCOs)的无偏测量,这些数据通常记录在EHR的非结构化临床医生记录中。将PCO信息整合到临床决策支持中有助于指导共同的治疗决策并促进以患者为导向的护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/6706996/f8c6e35d1734/egems-7-1-297-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验