Suppr超能文献

利用临床记录对以患者为中心的结局的严重程度进行表型分析:一个前列腺癌的应用案例。

Phenotyping severity of patient-centered outcomes using clinical notes: A prostate cancer use case.

作者信息

Bozkurt Selen, Paul Rohan, Coquet Jean, Sun Ran, Banerjee Imon, Brooks James D, Hernandez-Boussard Tina

机构信息

Department of Medicine, Biomedical Informatics Research Stanford University Stanford California USA.

Department of Biomedical Data Sciences Stanford University Stanford California USA.

出版信息

Learn Health Syst. 2020 Jul 17;4(4):e10237. doi: 10.1002/lrh2.10237. eCollection 2020 Oct.

Abstract

INTRODUCTION

A learning health system (LHS) must improve care in ways that are meaningful to patients, integrating patient-centered outcomes (PCOs) into core infrastructure. PCOs are common following cancer treatment, such as urinary incontinence (UI) following prostatectomy. However, PCOs are not systematically recorded because they can only be described by the patient, are subjective and captured as unstructured text in the electronic health record (EHR). Therefore, PCOs pose significant challenges for phenotyping patients. Here, we present a natural language processing (NLP) approach for phenotyping patients with UI to classify their disease into severity subtypes, which can increase opportunities to provide precision-based therapy and promote a value-based delivery system.

METHODS

Patients undergoing prostate cancer treatment from 2008 to 2018 were identified at an academic medical center. Using a hybrid NLP pipeline that combines rule-based and deep learning methodologies, we classified positive UI cases as mild, moderate, and severe by mining clinical notes.

RESULTS

The rule-based model accurately classified UI into disease severity categories (accuracy: 0.86), which outperformed the deep learning model (accuracy: 0.73). In the deep learning model, the recall rates for mild and moderate group were higher than the precision rate (0.78 and 0.79, respectively). A hybrid model that combined both methods did not improve the accuracy of the rule-based model but did outperform the deep learning model (accuracy: 0.75).

CONCLUSION

Phenotyping patients based on indication and severity of PCOs is essential to advance a patient centered LHS. EHRs contain valuable information on PCOs and by using NLP methods, it is feasible to accurately and efficiently phenotype PCO severity. Phenotyping must extend beyond the identification of disease to provide classification of disease severity that can be used to guide treatment and inform shared decision-making. Our methods demonstrate a path to a patient centered LHS that could advance precision medicine.

摘要

引言

学习型健康系统(LHS)必须以对患者有意义的方式改善医疗服务,将以患者为中心的结局(PCO)纳入核心基础设施。PCO在癌症治疗后很常见,例如前列腺切除术后的尿失禁(UI)。然而,PCO没有被系统地记录,因为它们只能由患者描述,具有主观性,并且在电子健康记录(EHR)中以非结构化文本形式被捕获。因此,PCO在对患者进行表型分析时带来了重大挑战。在此,我们提出一种自然语言处理(NLP)方法,用于对患有UI的患者进行表型分析,将其疾病分类为严重程度亚型,这可以增加提供精准治疗的机会,并促进基于价值的医疗服务体系。

方法

在一家学术医疗中心识别出2008年至2018年接受前列腺癌治疗的患者。使用结合基于规则和深度学习方法的混合NLP管道,我们通过挖掘临床记录将阳性UI病例分类为轻度、中度和重度。

结果

基于规则的模型将UI准确分类为疾病严重程度类别(准确率:0.86),优于深度学习模型(准确率:0.73)。在深度学习模型中,轻度和中度组的召回率高于精确率(分别为0.78和0.79)。结合两种方法的混合模型没有提高基于规则的模型的准确率,但确实优于深度学习模型(准确率:0.75)。

结论

基于PCO的指征和严重程度对患者进行表型分析对于推进以患者为中心的LHS至关重要。EHR包含有关PCO的有价值信息,通过使用NLP方法,可以准确有效地对PCO严重程度进行表型分析。表型分析必须超越疾病识别,提供可用于指导治疗和为共同决策提供信息的疾病严重程度分类。我们的方法展示了一条通往以患者为中心的LHS的道路,这可能会推动精准医学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a9/7556418/9b23f321359e/LRH2-4-e10237-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验