Centre for Quantitative Medicine.
Institute for Social Research.
Psychol Methods. 2020 Apr;25(2):182-205. doi: 10.1037/met0000232. Epub 2019 Sep 9.
Adaptive interventions (AIs) are increasingly popular in the behavioral sciences. An AI is a sequence of decision rules that specify for whom and under what conditions different intervention options should be offered, in order to address the changing needs of individuals as they progress over time. The sequential, multiple assignment, randomized trial (SMART) is a novel trial design that was developed to aid in empirically constructing effective AIs. The sequential randomizations in a SMART often yield multiple AIs that are embedded in the trial by design. Many SMARTs are motivated by scientific questions pertaining to the comparison of such embedded AIs. Existing data analytic methods and sample size planning resources for SMARTs are suitable only for superiority testing, namely for testing whether one embedded AI yields better primary outcomes on average than another. This calls for noninferiority/equivalence testing methods, because AIs are often motivated by the need to deliver support/care in a less costly or less burdensome manner, while still yielding benefits that are equivalent or noninferior to those produced by a more costly/burdensome standard of care. Here, we develop data-analytic methods and sample-size formulas for SMARTs testing the noninferiority or equivalence of one AI over another. Sample size and power considerations are discussed with supporting simulations, and online resources for sample size planning are provided. A simulated data analysis shows how to test noninferiority and equivalence hypotheses with SMART data. For illustration, we use an example from a SMART in the area of health psychology aiming to develop an AI for promoting weight loss among overweight/obese adults. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
适应性干预(AIs)在行为科学中越来越受欢迎。AIs 是一系列决策规则,规定了在什么情况下应该为谁提供不同的干预选项,以满足个体随着时间的推移而不断变化的需求。序贯、多次分配、随机试验(SMART)是一种新的试验设计,旨在帮助从经验上构建有效的 AIs。SMART 中的序贯随机化通常会产生多个 AIs,这些 AIs 通过设计嵌入在试验中。许多 SMART 是出于与比较这些嵌入式 AIs 相关的科学问题而提出的。现有的 SMART 数据分析方法和样本量规划资源仅适用于优效性检验,即检验一个嵌入式 AI 是否平均产生更好的主要结局。这需要非劣效性/等效性检验方法,因为 AIs 通常是出于以更低成本或更小负担提供支持/护理的需要而提出的,同时仍然产生与更昂贵/负担更大的标准护理相当或非劣效的收益。在这里,我们为 SMART 开发了用于检验一个 AI 相对于另一个 AI 的非劣效性或等效性的数据分析方法和样本量公式。讨论了样本量和功效考虑因素,并提供了支持性模拟,还提供了在线样本量规划资源。使用 SMART 数据的模拟数据分析展示了如何检验非劣效性和等效性假设。为了说明问题,我们使用了健康心理学领域的 SMART 中的一个示例,旨在开发一种用于促进超重/肥胖成年人减肥的 AI。(APA,2020 版权所有)。