Suppr超能文献

人类大脑不同空间尺度的信息处理。

Processing of different spatial scales in the human brain.

机构信息

Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.

Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel.

出版信息

Elife. 2019 Sep 10;8:e47492. doi: 10.7554/eLife.47492.

Abstract

Humans navigate across a range of spatial scales, from rooms to continents, but the brain systems underlying spatial cognition are usually investigated only in small-scale environments. Do the same brain systems represent and process larger spaces? Here we asked subjects to compare distances between real-world items at six different spatial scales (room, building, neighborhood, city, country, continent) under functional MRI. Cortical activity showed a gradual progression from small to large scale processing, along three gradients extending anteriorly from the parahippocampal place area (PPA), retrosplenial complex (RSC) and occipital place area (OPA), and along the hippocampus posterior-anterior axis. Each of the cortical gradients overlapped with the visual system posteriorly and the default-mode network (DMN) anteriorly. These results suggest a progression from concrete to abstract processing with increasing spatial scale, and offer a new organizational framework for the brain's spatial system, that may also apply to conceptual spaces beyond the spatial domain.

摘要

人类在各种空间尺度上进行导航,从房间到大陆,但支持空间认知的大脑系统通常仅在小尺度环境中进行研究。相同的大脑系统是否代表和处理更大的空间?在这里,我们要求受试者在功能磁共振成像下比较六个不同空间尺度(房间、建筑物、社区、城市、国家、大陆)中真实物品之间的距离。皮质活动显示出从小尺度到大尺度处理的逐渐进展,沿着从前海马旁回位置区域(PPA)、后扣带回复合体(RSC)和枕叶位置区域(OPA)向前延伸的三个梯度,以及沿着海马体前后轴延伸。每个皮质梯度都与视觉系统后部和默认模式网络(DMN)前部重叠。这些结果表明,随着空间尺度的增加,从具体到抽象的处理逐渐进展,为大脑的空间系统提供了一个新的组织框架,该框架也可能适用于空间领域之外的概念空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b47b/6739872/0bf58100bcec/elife-47492-fig1.jpg

相似文献

1
Processing of different spatial scales in the human brain.
Elife. 2019 Sep 10;8:e47492. doi: 10.7554/eLife.47492.
2
Spatial frequency processing in scene-selective cortical regions.
Neuroimage. 2015 May 15;112:86-95. doi: 10.1016/j.neuroimage.2015.02.058. Epub 2015 Mar 6.
4
Retrosplenial Cortex Indexes Stability beyond the Spatial Domain.
J Neurosci. 2018 Feb 7;38(6):1472-1481. doi: 10.1523/JNEUROSCI.2602-17.2017. Epub 2018 Jan 8.
5
The occipital place area represents first-person perspective motion information through scenes.
Cortex. 2016 Oct;83:17-26. doi: 10.1016/j.cortex.2016.06.022. Epub 2016 Jul 15.
6
Parsing rooms: the role of the PPA and RSC in perceiving object relations and spatial layout.
Brain Struct Funct. 2019 Sep;224(7):2505-2524. doi: 10.1007/s00429-019-01901-0. Epub 2019 Jul 17.
7
Perceived egocentric distance sensitivity and invariance across scene-selective cortex.
Cortex. 2016 Apr;77:155-163. doi: 10.1016/j.cortex.2016.02.006. Epub 2016 Feb 17.
8
Representation of human spatial navigation responding to input spatial information and output navigational strategies: An ALE meta-analysis.
Neurosci Biobehav Rev. 2019 Aug;103:60-72. doi: 10.1016/j.neubiorev.2019.06.012. Epub 2019 Jun 12.
9
Age-Related Differences in Functional and Structural Connectivity in the Spatial Navigation Brain Network.
Front Neural Circuits. 2019 Oct 29;13:69. doi: 10.3389/fncir.2019.00069. eCollection 2019.
10
Parahippocampal and retrosplenial contributions to human spatial navigation.
Trends Cogn Sci. 2008 Oct;12(10):388-96. doi: 10.1016/j.tics.2008.07.004. Epub 2008 Aug 28.

引用本文的文献

1
Visual imagery of familiar people and places in category selective cortex.
Neurosci Conscious. 2025 Apr 16;2025(1):niaf006. doi: 10.1093/nc/niaf006. eCollection 2025.
2
Cognitive maps for hierarchical spaces in the human brain.
bioRxiv. 2025 Feb 5:2025.02.05.636580. doi: 10.1101/2025.02.05.636580.
3
Processing of social closeness in the human brain.
Commun Biol. 2024 Oct 10;7(1):1293. doi: 10.1038/s42003-024-06934-8.
5
A neural circuit for spatial orientation derived from brain lesions.
Cereb Cortex. 2024 Jan 14;34(1). doi: 10.1093/cercor/bhad486.
7
Scene Perception and Visuospatial Memory Converge at the Anterior Edge of Visually Responsive Cortex.
J Neurosci. 2023 Aug 2;43(31):5723-5737. doi: 10.1523/JNEUROSCI.2043-22.2023. Epub 2023 Jul 20.
9
Neural basis of topographical disorientation in the primate posterior cingulate gyrus based on a labeled graph.
AIMS Neurosci. 2022 Sep 9;9(3):373-394. doi: 10.3934/Neuroscience.2022021. eCollection 2022.

本文引用的文献

1
Self-Agency and Self-Ownership in Cognitive Mapping.
Trends Cogn Sci. 2019 Jun;23(6):476-487. doi: 10.1016/j.tics.2019.04.003. Epub 2019 May 4.
2
A Posterior-Anterior Distinction between Scene Perception and Scene Construction in Human Medial Parietal Cortex.
J Neurosci. 2019 Jan 23;39(4):705-717. doi: 10.1523/JNEUROSCI.1219-18.2018. Epub 2018 Nov 30.
3
Navigating cognition: Spatial codes for human thinking.
Science. 2018 Nov 9;362(6415). doi: 10.1126/science.aat6766.
4
What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior.
Neuron. 2018 Oct 24;100(2):490-509. doi: 10.1016/j.neuron.2018.10.002.
6
Multiple Scales of Representation along the Hippocampal Anteroposterior Axis in Humans.
Curr Biol. 2018 Jul 9;28(13):2129-2135.e6. doi: 10.1016/j.cub.2018.05.016. Epub 2018 Jun 21.
7
Ventral-Dorsal Functional Contribution of the Posterior Cingulate Cortex in Human Spatial Orientation: A Meta-Analysis.
Front Hum Neurosci. 2018 May 8;12:190. doi: 10.3389/fnhum.2018.00190. eCollection 2018.
8
Mental-orientation: A new approach to assessing patients across the Alzheimer's disease spectrum.
Neuropsychology. 2018 Sep;32(6):690-699. doi: 10.1037/neu0000463. Epub 2018 May 21.
9
Vector-based navigation using grid-like representations in artificial agents.
Nature. 2018 May;557(7705):429-433. doi: 10.1038/s41586-018-0102-6. Epub 2018 May 9.
10
Computational mechanisms underlying cortical responses to the affordance properties of visual scenes.
PLoS Comput Biol. 2018 Apr 23;14(4):e1006111. doi: 10.1371/journal.pcbi.1006111. eCollection 2018 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验