Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel.
Elife. 2019 Sep 10;8:e47492. doi: 10.7554/eLife.47492.
Humans navigate across a range of spatial scales, from rooms to continents, but the brain systems underlying spatial cognition are usually investigated only in small-scale environments. Do the same brain systems represent and process larger spaces? Here we asked subjects to compare distances between real-world items at six different spatial scales (room, building, neighborhood, city, country, continent) under functional MRI. Cortical activity showed a gradual progression from small to large scale processing, along three gradients extending anteriorly from the parahippocampal place area (PPA), retrosplenial complex (RSC) and occipital place area (OPA), and along the hippocampus posterior-anterior axis. Each of the cortical gradients overlapped with the visual system posteriorly and the default-mode network (DMN) anteriorly. These results suggest a progression from concrete to abstract processing with increasing spatial scale, and offer a new organizational framework for the brain's spatial system, that may also apply to conceptual spaces beyond the spatial domain.
人类在各种空间尺度上进行导航,从房间到大陆,但支持空间认知的大脑系统通常仅在小尺度环境中进行研究。相同的大脑系统是否代表和处理更大的空间?在这里,我们要求受试者在功能磁共振成像下比较六个不同空间尺度(房间、建筑物、社区、城市、国家、大陆)中真实物品之间的距离。皮质活动显示出从小尺度到大尺度处理的逐渐进展,沿着从前海马旁回位置区域(PPA)、后扣带回复合体(RSC)和枕叶位置区域(OPA)向前延伸的三个梯度,以及沿着海马体前后轴延伸。每个皮质梯度都与视觉系统后部和默认模式网络(DMN)前部重叠。这些结果表明,随着空间尺度的增加,从具体到抽象的处理逐渐进展,为大脑的空间系统提供了一个新的组织框架,该框架也可能适用于空间领域之外的概念空间。