Suppr超能文献

皮肤脂肪组织具有高度的可塑性,并在小鼠中经历可逆的去分化。

Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice.

机构信息

Touchstone Diabetes Center.

Department of Biochemistry, and.

出版信息

J Clin Invest. 2019 Dec 2;129(12):5327-5342. doi: 10.1172/JCI130239.

Abstract

Dermal adipose tissue (also known as dermal white adipose tissue and herein referred to as dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly reappearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with dWAT's dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single-cell RNA sequencing, we observed that mature dermal adipocytes undergo dedifferentiation and redifferentiation under physiological and pathophysiological conditions. Upon various challenges, the dedifferentiated cells proliferate and redifferentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT toward maintaining skin homeostasis.

摘要

真皮脂肪组织(也称为真皮白色脂肪组织,以下简称 dWAT)近年来备受关注。然而,dWAT 的特征仍然很差。成熟的真皮脂肪细胞的命运以及不同阶段快速重新出现的真皮脂肪细胞的起源尚不清楚。在这里,我们分离了真皮脂肪细胞并在细胞和分子水平上对真皮脂肪进行了表征。结合 dWAT 对外部刺激的动态反应,我们确定真皮脂肪细胞是具有高可塑性的独特的白色脂肪细胞类群。通过结合脉冲追踪谱系追踪和单细胞 RNA 测序,我们观察到成熟的真皮脂肪细胞在生理和病理生理条件下经历去分化和再分化。在各种挑战下,去分化的细胞增殖并重新分化为脂肪细胞。此外,对 dWAT 的操作强调了成熟的真皮脂肪细胞在毛发周期和伤口愈合中的重要作用。总之,这些观察结果揭示了真皮脂肪细胞令人惊讶的可塑性,并解释了生理和病理生理条件下 dWAT 质量的动态变化,突出了 dWAT 对维持皮肤内稳态的重要贡献。

相似文献

1
Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice.
J Clin Invest. 2019 Dec 2;129(12):5327-5342. doi: 10.1172/JCI130239.
2
Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing.
Front Physiol. 2024 Feb 23;15:1346612. doi: 10.3389/fphys.2024.1346612. eCollection 2024.
3
A guide to studying human dermal adipocytes in situ.
Exp Dermatol. 2018 Jun;27(6):589-602. doi: 10.1111/exd.13549.
5
Defining dermal adipose tissue.
Exp Dermatol. 2014 Sep;23(9):629-31. doi: 10.1111/exd.12450.
6
The Role of Immature and Mature Adipocytes in Hair Cycling.
Trends Endocrinol Metab. 2019 Feb;30(2):93-105. doi: 10.1016/j.tem.2018.11.004. Epub 2018 Dec 14.
8
Dermal Adipocytes: From Irrelevance to Metabolic Targets?
Trends Endocrinol Metab. 2016 Jan;27(1):1-10. doi: 10.1016/j.tem.2015.11.002. Epub 2015 Nov 29.

引用本文的文献

1
Comparative single-cell lineage tracing identifies distinct adipocyte precursor dynamics in skin and inguinal fat.
Cell Stem Cell. 2025 Aug 7;32(8):1267-1284.e8. doi: 10.1016/j.stem.2025.07.004. Epub 2025 Jul 30.
3
Adipose tissue ageing: implications for metabolic health and lifespan.
Nat Rev Endocrinol. 2025 Jun 23. doi: 10.1038/s41574-025-01142-8.
5
snRNA-seq reveals subcutaneous white adipose tissue remodeling upon return to thermoneutrality after cold stimulation.
Front Cell Dev Biol. 2025 May 22;13:1578180. doi: 10.3389/fcell.2025.1578180. eCollection 2025.
6
Dietary lipids are largely deposited in skin and rapidly affect insulating properties.
Nat Commun. 2025 May 16;16(1):4570. doi: 10.1038/s41467-025-59869-x.
7
C3H10T1/2 Mesenchymal Stem Cell Line as a New In Vitro Tool for Studying Adipocyte Dedifferentiation.
Biology (Basel). 2025 Apr 20;14(4):444. doi: 10.3390/biology14040444.
8
Regulation of the terminal complement cascade in adipose tissue for control of its volume, cellularity, and fibrosis.
Obesity (Silver Spring). 2025 May;33(5):839-850. doi: 10.1002/oby.24270. Epub 2025 Mar 25.
10
Characterization of subcutaneous and visceral de-differentiated fat cells.
Mol Metab. 2025 Mar;93:102105. doi: 10.1016/j.molmet.2025.102105. Epub 2025 Jan 28.

本文引用的文献

2
The Role of Immature and Mature Adipocytes in Hair Cycling.
Trends Endocrinol Metab. 2019 Feb;30(2):93-105. doi: 10.1016/j.tem.2018.11.004. Epub 2018 Dec 14.
4
Skin aging as a mechanical phenomenon: The main weak links.
Nutr Healthy Aging. 2018 Jun 15;4(4):291-307. doi: 10.3233/NHA-170037.
5
Reversible De-differentiation of Mature White Adipocytes into Preadipocyte-like Precursors during Lactation.
Cell Metab. 2018 Aug 7;28(2):282-288.e3. doi: 10.1016/j.cmet.2018.05.022. Epub 2018 Jun 14.
6
Autologous fat grafting in keloids and hypertrophic scars: a review.
Scars Burn Heal. 2017 Apr 6;3:2059513117700157. doi: 10.1177/2059513117700157. eCollection 2017 Jan-Dec.
8
Integrating single-cell transcriptomic data across different conditions, technologies, and species.
Nat Biotechnol. 2018 Jun;36(5):411-420. doi: 10.1038/nbt.4096. Epub 2018 Apr 2.
9
Emerging nonmetabolic functions of skin fat.
Nat Rev Endocrinol. 2018 Mar;14(3):163-173. doi: 10.1038/nrendo.2017.162. Epub 2018 Jan 12.
10
Delayed Hair Follicle Morphogenesis and Hair Follicle Dystrophy in a Lipoatrophy Mouse Model of Pparg Total Deletion.
J Invest Dermatol. 2018 Mar;138(3):500-510. doi: 10.1016/j.jid.2017.09.024. Epub 2017 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验