文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

2005-2014 年美国大陆地区观测数据与化学输送模式模拟的气固污染物融合方法的应用。

Application of a Fusion Method for Gas and Particle Air Pollutants between Observational Data and Chemical Transport Model Simulations Over the Contiguous United States for 2005-2014.

机构信息

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

出版信息

Int J Environ Res Public Health. 2019 Sep 9;16(18):3314. doi: 10.3390/ijerph16183314.


DOI:10.3390/ijerph16183314
PMID:31505818
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6765984/
Abstract

Accurate spatiotemporal air quality data are critical for use in assessment of regulatory effectiveness and for exposure assessment in health studies. A number of data fusion methods have been developed to combine observational data and chemical transport model (CTM) results. Our approach focuses on preserving the temporal variation provided by observational data while deriving the spatial variation from the community multiscale air quality () simulations, a type of CTM. Here we show the results of fusing regulatory monitoring observational data with 12 km resolution CTM simulation results for 12 pollutants (CO, NOx, NO, SO O, PM, PM, NO, NH, EC, OC, SO) over the contiguous United States on a daily basis for a period of ten years (2005-2014). An annual mean regression between the CTM simulations and observational data is used to estimate the average spatial fields, and spatial interpolation of observations normalized by predicted annual average is used to provide the daily variation. Results match the temporal variation well ( values ranging from 0.84-0.98 across pollutants) and the spatial variation less well ( values 0.42-0.94). Ten-fold cross validation shows normalized root mean square error values of 60% or less and spatiotemporal values of 0.4 or more for all pollutants except SO.

摘要

准确的时空空气质量数据对于评估监管有效性和健康研究中的暴露评估至关重要。已经开发了许多数据融合方法来结合观测数据和化学传输模型(CTM)的结果。我们的方法侧重于在从社区多尺度空气质量()模拟中得出空间变化的同时保留观测数据提供的时间变化,这是一种 CTM。在这里,我们展示了将监管监测观测数据与 12 公里分辨率 CTM 模拟结果融合的结果,该结果涵盖了 12 种污染物(CO、NOx、NO、SO、O、PM、PM、NO、NH、EC、OC、SO)在连续十年(2005-2014 年)内的每日基础上对美国大陆进行的模拟。使用 CTM 模拟和观测数据之间的年平均回归来估计平均空间场,并使用预测的年平均值归一化的观测值进行空间插值以提供每日变化。结果与时间变化很好地匹配(污染物之间的 值范围为 0.84-0.98),而空间变化则不太匹配( 值为 0.42-0.94)。十折交叉验证显示,除 SO 外,所有污染物的归一化均方根误差值均小于 60%,时空 值均大于 0.4。

相似文献

[1]
Application of a Fusion Method for Gas and Particle Air Pollutants between Observational Data and Chemical Transport Model Simulations Over the Contiguous United States for 2005-2014.

Int J Environ Res Public Health. 2019-9-9

[2]
Method for Fusing Observational Data and Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution.

Environ Sci Technol. 2016-3-11

[3]
Air pollution in China: Status and spatiotemporal variations.

Environ Pollut. 2017-8

[4]
Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.

Res Rep Health Eff Inst. 2012-5

[5]
The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.

Res Rep Health Eff Inst. 2011-4

[6]
The influence of improved air quality on mortality risks in Erfurt, Germany.

Res Rep Health Eff Inst. 2009-2

[7]
Using land use variable information and a random forest approach to correct spatial mean bias in fused CMAQ fields for particulate and gas species.

Atmos Environ (1994). 2022-4-1

[8]
Toward verifying fossil fuel CO2 emissions with the CMAQ model: motivation, model description and initial simulation.

J Air Waste Manag Assoc. 2014-4

[9]
The London low emission zone baseline study.

Res Rep Health Eff Inst. 2011-11

[10]
Process analysis of a regional air pollution episode over Pearl River Delta region, China, using the MM5-CMAQ model.

J Air Waste Manag Assoc. 2014-4

引用本文的文献

[1]
The influence of ambient air pollution during folliculogenesis, endometrial development, and spermatogenesis on fertility: A study among patients using vitrified donor oocyte in vitro fertilization.

Environ Res. 2025-8-11

[2]
Air pollution exposure in vitrified oocyte donors and male recipient partners in relation to fertilization and embryo quality.

Environ Int. 2024-11

[3]
Estimated Impacts of Prescribed Fires on Air Quality and Premature Deaths in Georgia and Surrounding Areas in the US, 2015-2020.

Environ Sci Technol. 2024-7-16

[4]
Joint effects of air pollution and neighborhood socioeconomic status on cognitive decline - Mediation by depression, high cholesterol levels, and high blood pressure.

Sci Total Environ. 2024-5-1

[5]
Using land use variable information and a random forest approach to correct spatial mean bias in fused CMAQ fields for particulate and gas species.

Atmos Environ (1994). 2022-4-1

[6]
Ambient traffic related air pollution in relation to ovarian reserve and oocyte quality in young, healthy oocyte donors.

Environ Int. 2024-1

[7]
CRITICAL WINDOW VARIABLE SELECTION FOR MIXTURES: ESTIMATING THE IMPACT OF MULTIPLE AIR POLLUTANTS ON STILLBIRTH.

Ann Appl Stat. 2022-9

[8]
Long-Term Effects of Ambient Particulate and Gaseous Pollutants on Serum High-Sensitivity C-Reactive Protein Levels: A Cross-Sectional Study Using KoGES-HEXA Data.

Int J Environ Res Public Health. 2022-9-14

[9]
The complex relationship of air pollution and neighborhood socioeconomic status and their association with cognitive decline.

Environ Int. 2022-9

[10]
Multivariate Spatial Prediction of Air Pollutant Concentrations with INLA.

Environ Res Commun. 2021-10

本文引用的文献

[1]
A Measurement-Model Fusion Approach for Improved Wet Deposition Maps and Trends.

J Geophys Res Atmos. 2019-4-16

[2]
A Bayesian Downscaler Model to Estimate Daily PM Levels in the Conterminous US.

Int J Environ Res Public Health. 2018-9-13

[3]
Estimating PM Concentrations in the Conterminous United States Using the Random Forest Approach.

Environ Sci Technol. 2017-6-1

[4]
Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States.

Environ Sci Technol. 2016-5-3

[5]
Method for Fusing Observational Data and Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution.

Environ Sci Technol. 2016-3-11

[6]
Air Pollution and Preterm Birth in the U.S. State of Georgia (2002-2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements.

Environ Health Perspect. 2016-6

[7]
Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States.

Sci Total Environ. 2013-12-27

[8]
Exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations.

J Expo Sci Environ Epidemiol. 2013-10-2

[9]
A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM concentrations in epidemiology.

Atmos Environ (1994). 2013-8-1

[10]
Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta.

J Expo Sci Environ Epidemiol. 2013-8-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索