School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
Int J Environ Res Public Health. 2019 Sep 9;16(18):3314. doi: 10.3390/ijerph16183314.
Accurate spatiotemporal air quality data are critical for use in assessment of regulatory effectiveness and for exposure assessment in health studies. A number of data fusion methods have been developed to combine observational data and chemical transport model (CTM) results. Our approach focuses on preserving the temporal variation provided by observational data while deriving the spatial variation from the community multiscale air quality () simulations, a type of CTM. Here we show the results of fusing regulatory monitoring observational data with 12 km resolution CTM simulation results for 12 pollutants (CO, NOx, NO, SO O, PM, PM, NO, NH, EC, OC, SO) over the contiguous United States on a daily basis for a period of ten years (2005-2014). An annual mean regression between the CTM simulations and observational data is used to estimate the average spatial fields, and spatial interpolation of observations normalized by predicted annual average is used to provide the daily variation. Results match the temporal variation well ( values ranging from 0.84-0.98 across pollutants) and the spatial variation less well ( values 0.42-0.94). Ten-fold cross validation shows normalized root mean square error values of 60% or less and spatiotemporal values of 0.4 or more for all pollutants except SO.
准确的时空空气质量数据对于评估监管有效性和健康研究中的暴露评估至关重要。已经开发了许多数据融合方法来结合观测数据和化学传输模型(CTM)的结果。我们的方法侧重于在从社区多尺度空气质量()模拟中得出空间变化的同时保留观测数据提供的时间变化,这是一种 CTM。在这里,我们展示了将监管监测观测数据与 12 公里分辨率 CTM 模拟结果融合的结果,该结果涵盖了 12 种污染物(CO、NOx、NO、SO、O、PM、PM、NO、NH、EC、OC、SO)在连续十年(2005-2014 年)内的每日基础上对美国大陆进行的模拟。使用 CTM 模拟和观测数据之间的年平均回归来估计平均空间场,并使用预测的年平均值归一化的观测值进行空间插值以提供每日变化。结果与时间变化很好地匹配(污染物之间的 值范围为 0.84-0.98),而空间变化则不太匹配( 值为 0.42-0.94)。十折交叉验证显示,除 SO 外,所有污染物的归一化均方根误差值均小于 60%,时空 值均大于 0.4。
Environ Pollut. 2017-8
Res Rep Health Eff Inst. 2009-2
J Air Waste Manag Assoc. 2014-4
Res Rep Health Eff Inst. 2011-11
J Air Waste Manag Assoc. 2014-4
Int J Environ Res Public Health. 2022-9-14
Environ Res Commun. 2021-10
J Geophys Res Atmos. 2019-4-16
Int J Environ Res Public Health. 2018-9-13
Environ Sci Technol. 2017-6-1
Environ Sci Technol. 2016-5-3
J Expo Sci Environ Epidemiol. 2013-10-2
J Expo Sci Environ Epidemiol. 2013-8-21