Suppr超能文献

使用集成嵌套拉普拉斯近似法对空气污染物浓度进行多变量空间预测。

Multivariate Spatial Prediction of Air Pollutant Concentrations with INLA.

作者信息

Gong Wenlong, Reich Brian J, Chang Howard H

机构信息

North Carolina State University.

Emory University.

出版信息

Environ Res Commun. 2021 Oct;3(10). doi: 10.1088/2515-7620/ac2f92. Epub 2021 Oct 27.

Abstract

Estimates of daily air pollution concentrations with complete spatial and temporal coverage are important for supporting epidemiologic studies and health impact assessments. While numerous approaches have been developed for modeling air pollution, they typically only consider each pollutant separately. We describe a spatial multipollutant data fusion model that combines monitoring measurements and chemical transport model simulations that leverages dependence between pollutants to improve spatial prediction. For the contiguous United States, we created a data product of daily concentration for 12 pollutants (CO, NOx, NO, SO, O, PM, and PM species EC, OC, NO, NH, SO) during the period 2005 to 2014. Out-of-sample prediction showed good performance, particularly for daily PM species EC (R = 0.64), OC (R = 0.75), NH (R = 0.84), NO (R2 = 0.73), and SO (R = 0.80). By employing the integrated nested Laplace approximation (INLA) for Bayesian inference, our approach also provides model-based prediction error estimates. The daily data product at 12km spatial resolution will be publicly available immediately upon publication. To our knowledge this is the first publicly available data product for major PM species and several gases at this spatial and temporal resolution.

摘要

具有完整时空覆盖范围的每日空气污染浓度估计对于支持流行病学研究和健康影响评估非常重要。虽然已经开发了许多用于模拟空气污染的方法,但它们通常只单独考虑每种污染物。我们描述了一种空间多污染物数据融合模型,该模型结合了监测测量数据和化学传输模型模拟,利用污染物之间的相关性来改善空间预测。对于美国本土,我们创建了一个2005年至2014年期间12种污染物(一氧化碳、氮氧化物、一氧化氮、二氧化硫、臭氧、颗粒物以及颗粒物成分元素碳、有机碳、一氧化氮、铵、二氧化硫)的日浓度数据产品。样本外预测显示出良好的性能,特别是对于每日颗粒物成分元素碳(R = 0.64)、有机碳(R = 0.75)、铵(R = 0.84)、一氧化氮(R2 = 0.73)和二氧化硫(R = 0.80)。通过采用贝叶斯推理的集成嵌套拉普拉斯近似法(INLA),我们的方法还提供了基于模型的预测误差估计。具有12公里空间分辨率的每日数据产品将在发表后立即公开提供。据我们所知,这是首个以这种时空分辨率公开提供的主要颗粒物成分和几种气体的数据产品

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验