文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

优化益生菌乳杆菌菌株作为饲料添加剂的生产参数。

Optimization of Production Parameters for Probiotic Lactobacillus Strains as Feed Additive.

机构信息

Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany.

出版信息

Molecules. 2019 Sep 9;24(18):3286. doi: 10.3390/molecules24183286.


DOI:10.3390/molecules24183286
PMID:31505895
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6767249/
Abstract

In animal nutrition, probiotics are considered as desirable alternatives to antibiotic growth promoters. The beneficial effects of probiotics primarily depend on their viability in feed, which demands technical optimization of biomass production, since processing and storage capacities are often strain-specific. In this study, we optimized the production parameters for two broiler-derived probiotic lactobacilli ( and ). Carbohydrate utilization of both strains was determined and preferred substrates that boosted biomass production in lab-scale fermentations were selected. The strains showed good aerobic tolerance, which resulted in easier scale-up production. For the freeze-drying process, the response surface methodology was applied to optimize the composition of cryoprotective media. A quadratic polynomial model was built to study three protective factors (skim milk, sucrose, and trehalose) and to predict the optimal working conditions for maximum viability. The optimal combination of protectants was 0.14g/mL skim milk/ 0.08 g/mL sucrose/ 0.09 g/mL trehalose () and 0.15g/mL skim milk/ 0.08 g/mL sucrose/ 0.07 g/mL (), respectively. Furthermore, the in-feed stabilities of the probiotic strains were evaluated under different conditions. Our results indicate that the chosen protectants exerted an extensive protection on strains during the storage. Although only storage of the strains at 4 °C retained the maximum stability of both strains, the employed protectant matrix showed promising results at room temperature.

摘要

在动物营养中,益生菌被认为是抗生素生长促进剂的理想替代品。益生菌的有益作用主要取决于其在饲料中的生存能力,这需要对生物量生产进行技术优化,因为加工和储存能力通常因菌株而异。在这项研究中,我们优化了两种源自肉鸡的益生菌乳杆菌(和)的生产参数。测定了两种菌株的碳水化合物利用情况,并选择了能够促进实验室规模发酵中生物量生产的首选底物。这两种菌株表现出良好的好氧耐受性,这使得更容易进行大规模生产。对于冷冻干燥过程,响应面法被用于优化冷冻保护剂介质的组成。建立了一个二次多项式模型来研究三种保护因素(脱脂乳、蔗糖和海藻糖),并预测最大存活率的最佳工作条件。保护剂的最佳组合分别为 0.14g/mL 脱脂乳/0.08 g/mL 蔗糖/0.09 g/mL 海藻糖()和 0.15g/mL 脱脂乳/0.08 g/mL 蔗糖/0.07 g/mL ()。此外,还评估了益生菌菌株在不同条件下的饲料稳定性。结果表明,所选保护剂在储存过程中对菌株有广泛的保护作用。尽管仅将菌株储存在 4°C 下才能保持两种菌株的最大稳定性,但所采用的保护剂基质在室温下显示出有希望的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1667/6767249/bc75b6d682e3/molecules-24-03286-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1667/6767249/b580ec78a157/molecules-24-03286-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1667/6767249/a2af2817965f/molecules-24-03286-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1667/6767249/a2994b72cb8f/molecules-24-03286-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1667/6767249/bc75b6d682e3/molecules-24-03286-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1667/6767249/b580ec78a157/molecules-24-03286-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1667/6767249/a2af2817965f/molecules-24-03286-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1667/6767249/a2994b72cb8f/molecules-24-03286-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1667/6767249/bc75b6d682e3/molecules-24-03286-g004.jpg

相似文献

[1]
Optimization of Production Parameters for Probiotic Lactobacillus Strains as Feed Additive.

Molecules. 2019-9-9

[2]
Determination of Optimized Growth Medium and Cryoprotective Additives to Enhance the Growth and Survival of .

J Microbiol Biotechnol. 2018-5-28

[3]
Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents.

Food Res Int. 2018-7-30

[4]
Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage.

Benef Microbes. 2015

[5]
Enhancement of viability of a probiotic Lactobacillus strain for poultry during freeze-drying and storage using the response surface methodology.

Anim Sci J. 2010-10-4

[6]
Impact of a Novel Nano-Protectant on the Viability of Probiotic Bacterium K17.

Foods. 2021-3-4

[7]
Storage stability and sourdough acidification kinetic of freeze-dried Lactobacillus curvatus N19 under optimized cryoprotectant formulation.

Cryobiology. 2020-10

[8]
Optimization of cryoprotectant formulation to enhance the viability of NBC99 isolated from human origin.

Prep Biochem Biotechnol. 2024-8

[9]
State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG).

J Appl Microbiol. 2008-6

[10]
Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents.

Nutrients. 2010-3-11

引用本文的文献

[1]
Evaluation of Different Nutritional Sources in Lactic Acid Bacteria Fermentation for Sustainable Postbiotic Production.

Foods. 2025-2-14

[2]
Plant Growth-Promoting and Herbicidal Bacteria as Potential Bio-Based Solutions for Agriculture in Desertic Regions.

Plants (Basel). 2024-12-24

[3]
Harnessing the Health and Techno-Functional Potential of Lactic Acid Bacteria: A Comprehensive Review.

Foods. 2024-5-15

[4]
Bioreactor Expansion Affects Microbial Succession of Mixotrophic Acidophiles and Bioremediation of Cadmium-Contaminated Soils.

Toxics. 2024-5-13

[5]
Optimization of Mixed Inulin, Fructooligosaccharides, and Galactooligosaccharides as Prebiotics for Stimulation of Probiotics Growth and Function.

Foods. 2023-4-9

[6]
Isolation and characterization of A14.2, a strain with immunomodulating activity on .

Saudi J Biol Sci. 2023-4

[7]
Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition.

Arch Microbiol. 2021-12-23

[8]
Growth Optimization of for Production of Antimicrobial Peptide Acidocin 4356: Scale up from Flask to Lab-Scale Fermenter.

Iran J Biotechnol. 2021-7-1

[9]
The Endophytic sp. S57 for Plant-Growth Promotion and the Biocontrol of Phytopathogenic Fungi and Nematodes.

Plants (Basel). 2021-7-27

[10]
Impact of a Novel Nano-Protectant on the Viability of Probiotic Bacterium K17.

Foods. 2021-3-4

本文引用的文献

[1]
Hazard analysis approaches for certain small retail establishments in view of the application of their food safety management systems.

EFSA J. 2017-3-2

[2]
Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome.

Int J Food Microbiol. 2019-3-12

[3]
Statistical modelling for optimized lyophilization of Lactobacillus acidophilus strains for improved viability and stability using response surface methodology.

AMB Express. 2018-8-10

[4]
The role of probiotics, prebiotics and synbiotics in animal nutrition.

Gut Pathog. 2018-6-6

[5]
Interspecies comparison of probiotics isolated from different animals.

Vet World. 2018-2

[6]
Adaptation to Aerobic Environment of Strains.

Front Microbiol. 2018-2-9

[7]
Optimization of a protective medium for enhancing the viability of freeze-dried Bacillus amyloliquefaciens B1408 based on response surface methodology.

Cryobiology. 2018-4

[8]
Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition.

AMB Express. 2017-11-27

[9]
Efficacy of species-specific probiotic Pediococcus acidilactici FT28 on blood biochemical profile, carcass traits and physicochemical properties of meat in fattening pigs.

Res Vet Sci. 2017-11-21

[10]
Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken.

Microbiome. 2017-8-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索