Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, República de Panamá.
Immunogenetics. 2019 Sep;71(8-9):575-587. doi: 10.1007/s00251-019-01128-7. Epub 2019 Sep 13.
The major histocompatibility complex (MHC) is one of the most diverse genetic regions under pathogen-driven selection because of its central role in antigen binding and immunity. The highest MHC variability, both in terms of the number of individual alleles and gene copies, has so far been found in passerine birds; this is probably attributable to passerine adaptation to both a wide geographic range and a diverse array of habitats. If extraordinary high MHC variation and duplication rates are adaptive features under selection during the evolution of ecologically and taxonomically diverse species, then similarly diverse MHC architectures should be found in bats. Bats are an extremely species-rich mammalian group that is globally widely distributed. Many bat species roost in multitudinous groups and have high contact rates with pathogens, conspecifics, and allospecifics. We have characterized the MHC class I diversity in 116 Panamanian Seba's short-tailed bats (Carollia perspicillata), a widely distributed, generalist, neotropical species. We have detected a remarkable individual and population-level diversity of MHC class I genes, with between seven and 22 alleles and a unique genotype in each individual. This diversity is comparable with that reported in passerine birds and, in both taxonomic groups, further variability has evolved through length polymorphisms. Our findings support the hypothesis that, for species with a geographically broader range, high MHC class I variability is particularly adaptive. Investigation of the details of the underlying adaptive processes and the role of the high MHC diversity in pathogen resistance are important next steps for a better understanding of the role of bats in viral evolution and as carriers of several deadly zoonotic viruses.
主要组织相容性复合体 (MHC) 是受病原体驱动选择的遗传区域中最多样化的区域之一,因为其在抗原结合和免疫中起着核心作用。迄今为止,在雀形目鸟类中发现了最高的 MHC 变异性,无论是个体等位基因的数量还是基因拷贝数;这可能归因于雀形目动物对广泛的地理范围和多样化的栖息地的适应。如果非凡的高 MHC 变异和复制率是在生态和分类多样化物种的进化过程中选择的适应性特征,那么在蝙蝠中也应该发现类似多样化的 MHC 结构。蝙蝠是一种物种丰富的哺乳动物群体,在全球范围内广泛分布。许多蝙蝠物种成群栖息,与病原体、同种和异种之间的接触率很高。我们已经描述了 116 只巴拿马 Seba 的短尾蝙蝠 (Carollia perspicillata) 的 MHC 类 I 多样性,这是一种分布广泛、多面手、新热带物种。我们在 MHC 类 I 基因的个体和群体水平上检测到了显著的多样性,每个个体有 7 到 22 个等位基因和独特的基因型。这种多样性与雀形目鸟类报告的多样性相当,并且在这两个分类群中,通过长度多态性进一步进化了更多的变异性。我们的研究结果支持了这样的假设,即对于具有更广泛地理范围的物种,高 MHC 类 I 变异性特别具有适应性。研究潜在适应性过程的细节以及 MHC 多样性在抵抗病原体方面的作用,对于更好地了解蝙蝠在病毒进化中的作用以及作为几种致命人畜共患病病毒的携带者的作用,是重要的下一步。