From the Department of Radiology, James H. Clark Center (S.A.M., A.N.C.L., S.N., V.S.N.), Division of Nuclear Medicine, Department of Radiology (G.A.D.), and Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B., J.B.S.), Stanford University, 318 Campus Dr, Room S355, Stanford, CA 94305; Palo Alto VA Health Care System, Palo Alto, Calif (M.V.); California Pacific Medical Center, San Francisco, Calif (G.H.); and Section of Pulmonary & Critical Care Medicine, Moffitt Cancer Center & Research Institute; Morsani College of Medicine, University of South Florida, Tampa, Fla (V.S.N.).
Radiology. 2019 Nov;293(2):451-459. doi: 10.1148/radiol.2019190357. Epub 2019 Sep 17.
Background Primary tumor maximum standardized uptake value is a prognostic marker for non-small cell lung cancer. In the setting of malignancy, bone marrow activity from fluorine 18-fluorodeoxyglucose (FDG) PET may be informative for clinical risk stratification. Purpose To determine whether integrating FDG PET radiomic features of the primary tumor, tumor penumbra, and bone marrow identifies lung cancer disease-free survival more accurately than clinical features alone. Materials and Methods Patients were retrospectively analyzed from two distinct cohorts collected between 2008 and 2016. Each tumor, its surrounding penumbra, and bone marrow from the L3-L5 vertebral bodies was contoured on pretreatment FDG PET/CT images. There were 156 bone marrow and 512 tumor and penumbra radiomic features computed from the PET series. Randomized sparse Cox regression by least absolute shrinkage and selection operator identified features that predicted disease-free survival in the training cohort. Cox proportional hazards models were built and locked in the training cohort, then evaluated in an independent cohort for temporal validation. Results There were 227 patients analyzed; 136 for training (mean age, 69 years ± 9 [standard deviation]; 101 men) and 91 for temporal validation (mean age, 72 years ± 10; 91 men). The top clinical model included stage; adding tumor region features alone improved outcome prediction (log likelihood, -158 vs -152; = .007). Adding bone marrow features continued to improve performance (log likelihood, -158 vs -145; = .001). The top model integrated stage, two bone marrow texture features, one tumor with penumbra texture feature, and two penumbra texture features (concordance, 0.78; 95% confidence interval: 0.70, 0.85; < .001). This fully integrated model was a predictor of poor outcome in the independent cohort (concordance, 0.72; 95% confidence interval: 0.64, 0.80; < .001) and a binary score stratified patients into high and low risk of poor outcome ( < .001). Conclusion A model that includes pretreatment fluorine 18-fluorodeoxyglucose PET texture features from the primary tumor, tumor penumbra, and bone marrow predicts disease-free survival of patients with non-small cell lung cancer more accurately than clinical features alone. © RSNA, 2019
背景 原发性肿瘤最大标准化摄取值是预测非小细胞肺癌的预后标志物。在恶性肿瘤的情况下,氟 18-氟脱氧葡萄糖(FDG)PET 的骨髓活性可能对临床风险分层具有信息价值。目的 确定整合原发性肿瘤、肿瘤半影区和骨髓的 FDG PET 放射组学特征是否比仅基于临床特征更能准确识别肺癌无病生存。材料与方法 对 2008 年至 2016 年间收集的两个独立队列中的患者进行回顾性分析。在 FDG PET/CT 图像上对预处理的每个肿瘤、其周围半影区和 L3-L5 椎体的骨髓进行轮廓勾画。从 PET 系列中计算出 156 个骨髓和 512 个肿瘤和半影区放射组学特征。通过最小绝对值收缩和选择算子的随机稀疏 Cox 回归确定了在训练队列中预测无病生存的特征。构建 Cox 比例风险模型并在训练队列中锁定,然后在独立队列中进行评估以进行时间验证。结果 共分析了 227 例患者;136 例用于训练(平均年龄,69 岁±9[标准差];101 例男性),91 例用于时间验证(平均年龄,72 岁±10;91 例男性)。最佳临床模型包括分期;单独添加肿瘤区域特征可改善预后预测(对数似然,-158 比-152;=.007)。添加骨髓特征可继续提高性能(对数似然,-158 比-145;=.001)。最佳模型整合了分期、两个骨髓纹理特征、一个肿瘤与半影区纹理特征以及两个半影区纹理特征(一致性,0.78;95%置信区间:0.70,0.85;<.001)。该完全整合模型可预测独立队列中不良预后的发生(一致性,0.72;95%置信区间:0.64,0.80;<.001),且二分评分可将患者分为预后不良的高风险和低风险组(<.001)。结论 与仅基于临床特征相比,包含非小细胞肺癌患者 FDG PET 原发性肿瘤、肿瘤半影区和骨髓的预处理纹理特征的模型可更准确地预测无病生存率。