Institute of Biomaterial Science , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , Teltow , Germany.
Institute of Chemistry , University of Potsdam , Karl-Liebknecht-Straße 24-25 , Potsdam , Germany.
Biomacromolecules. 2019 Oct 14;20(10):3627-3640. doi: 10.1021/acs.biomac.9b01074. Epub 2019 Sep 26.
Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape-memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape-memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials.
在自然界中,生物体利用储存在其物质结构中的信息,对各种环境变化产生物理响应。能够对合成材料进行编程,使其以类似的方式内在地响应环境变化,这有可能彻底改变材料科学。通过设计能够根据其结构中编码的信息响应地改变形状或行为的聚合器件,我们可以创建功能物理行为,包括形状记忆和致动能力。在这里,我们重点介绍生物材料和基于生物聚合物的材料的刺激响应性和形状变化能力,以及它们在生物医学方面的潜在应用,为形状记忆材料提供了一个生物视角。我们讨论了在聚合材料中纳入形状记忆(致动)功能的策略,从其与输入(环境刺激)和输出(形状变化)的关系的角度来概念化。讨论了在单个材料主体中集成多个功能以实现多功能性相关的挑战和机遇。最后,我们描述了如何使用感测、转换和传输刺激的元件来创建多敏感材料。