Tarazona Natalia A, Machatschek Rainhard, Balcucho Jennifer, Castro-Mayorga Jinneth Lorena, Saldarriaga Juan F, Lendlein Andreas
Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany.
Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam, Germany.
MRS Energy Sustain. 2022;9(1):28-34. doi: 10.1557/s43581-021-00015-7. Epub 2022 Feb 9.
The production and consumption of commodity polymers have been an indispensable part of the development of our modern society. Owing to their adjustable properties and variety of functions, polymer-based materials will continue playing important roles in achieving the Sustainable Development Goals (SDG)s, defined by the United Nations, in key areas such as healthcare, transport, food preservation, construction, electronics, and water management. Considering the serious environmental crisis, generated by increasing consumption of plastics, leading-edge polymers need to incorporate two types of functions: Those that directly arise from the demands of the application (e.g. selective gas and liquid permeation, actuation or charge transport) and those that enable minimization of environmental harm, e.g., through prolongation of the functional lifetime, minimization of material usage, or through predictable disintegration into non-toxic fragments. Here, we give examples of how the incorporation of a thoughtful combination of properties/functions can enhance the sustainability of plastics ranging from material design to waste management. We focus on tools to measure and reduce the negative impacts of plastics on the environment throughout their life cycle, the use of renewable sources for their synthesis, the design of biodegradable and/or recyclable materials, and the use of biotechnological strategies for enzymatic recycling of plastics that fits into a circular bioeconomy. Finally, we discuss future applications for sustainable plastics with the aim to achieve the SDGs through international cooperation.
Leading-edge polymer-based materials for consumer and advanced applications are necessary to achieve sustainable development at a global scale. It is essential to understand how sustainability can be incorporated in these materials via green chemistry, the integration of bio-based building blocks from biorefineries, circular bioeconomy strategies, and combined smart and functional capabilities.
商品聚合物的生产和消费一直是我们现代社会发展不可或缺的一部分。由于其可调节的性能和多样的功能,聚合物基材料将继续在实现联合国定义的可持续发展目标(SDG)中发挥重要作用,这些目标涉及医疗保健、交通、食品保鲜、建筑、电子和水管理等关键领域。考虑到塑料消费增加所引发的严重环境危机,前沿聚合物需要具备两种功能:一种是直接源于应用需求的功能(例如选择性气体和液体渗透、驱动或电荷传输),另一种是能够将环境危害降至最低的功能,例如通过延长功能寿命、减少材料使用量或通过可预测地分解为无毒碎片来实现。在此,我们举例说明如何通过将各种性能/功能进行巧妙组合,来提高从材料设计到废物管理等各个环节的塑料可持续性。我们关注用于测量和减少塑料在其整个生命周期内对环境负面影响的工具、使用可再生资源进行合成、设计可生物降解和/或可回收材料,以及采用生物技术策略实现塑料的酶促回收,从而融入循环生物经济。最后,我们讨论可持续塑料的未来应用,旨在通过国际合作实现可持续发展目标。
对于实现全球范围内的可持续发展而言,用于消费和先进应用的前沿聚合物基材料至关重要。必须了解如何通过绿色化学、整合来自生物精炼厂的生物基构建单元、循环生物经济策略以及结合智能和功能特性,将可持续性融入这些材料之中。