Koola Jejo D, Ho Sam B, Cao Aize, Chen Guanhua, Perkins Amy M, Davis Sharon E, Matheny Michael E
Tennessee Valley Healthcare System (TVHS) VA Medical Center, Veterans Health Administration, Nashville, TN, USA.
Division of Hospital Medicine, Department of Medicine, University of California, San Diego, CA, USA.
Dig Dis Sci. 2020 Apr;65(4):1003-1031. doi: 10.1007/s10620-019-05826-w. Epub 2019 Sep 17.
Early hospital readmission for patients with cirrhosis continues to challenge the healthcare system. Risk stratification may help tailor resources, but existing models were designed using small, single-institution cohorts or had modest performance.
We leveraged a large clinical database from the Department of Veterans Affairs (VA) to design a readmission risk model for patients hospitalized with cirrhosis. Additionally, we analyzed potentially modifiable or unexplored readmission risk factors.
A national VA retrospective cohort of patients with a history of cirrhosis hospitalized for any reason from January 1, 2006, to November 30, 2013, was developed from 123 centers. Using 174 candidate variables within demographics, laboratory results, vital signs, medications, diagnoses and procedures, and healthcare utilization, we built a 47-variable penalized logistic regression model with the outcome of all-cause 30-day readmission. We excluded patients who left against medical advice, transferred to a non-VA facility, or if the hospital length of stay was greater than 30 days. We evaluated calibration and discrimination across variable volume and compared the performance to recalibrated preexisting risk models for readmission.
We analyzed 67,749 patients and 179,298 index hospitalizations. The 30-day readmission rate was 23%. Ascites was the most common cirrhosis-related cause of index hospitalization and readmission. The AUC of the model was 0.670 compared to existing models (0.649, 0.566, 0.577). The Brier score of 0.165 showed good calibration.
Our model achieved better discrimination and calibration compared to existing models, even after local recalibration. Assessment of calibration by variable parsimony revealed performance improvements for increasing variable inclusion well beyond those detectable for discrimination.
肝硬化患者早期再次入院仍然是医疗系统面临的挑战。风险分层可能有助于合理分配资源,但现有模型是基于小型单机构队列设计的,或表现一般。
我们利用退伍军人事务部(VA)的大型临床数据库,为肝硬化住院患者设计了一个再入院风险模型。此外,我们分析了可能可改变或未被探索的再入院风险因素。
从123个中心建立了一个全国性VA回顾性队列,纳入2006年1月1日至2013年11月30日因任何原因住院的有肝硬化病史的患者。利用人口统计学、实验室检查结果、生命体征、用药情况、诊断和治疗以及医疗利用方面的174个候选变量,我们构建了一个包含47个变量的惩罚逻辑回归模型,以全因30天再入院为结局。我们排除了自动出院、转至非VA机构的患者,或住院时间超过30天的患者。我们评估了不同变量数量下的校准和区分能力,并将该模型的表现与重新校准的现有再入院风险模型进行比较。
我们分析了67749例患者和179298次索引住院。30天再入院率为23%。腹水是索引住院和再入院最常见的与肝硬化相关的原因。与现有模型(0.649、0.566、0.577)相比,该模型的AUC为0.670。Brier评分为0.165,显示校准良好。
与现有模型相比,即使经过局部重新校准,我们的模型仍具有更好的区分能力和校准效果。通过变量简约性评估校准显示,增加变量纳入时性能有显著改善,远超区分能力方面可检测到的改善。