Suppr超能文献

轨迹预测循环神经网络升级版(TrajPredRNN+):一种基于深度学习利用天气雷达回波图像进行降水临近预报的新方法。

trajPredRNN+: A new approach for precipitation nowcasting with weather radar echo images based on deep learning.

作者信息

Ji Chongxing, Xu Yuan

机构信息

Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China.

School of Artificial Intelligence, Dongguan City University, Dongguang, Guangdong, 523109, China.

出版信息

Heliyon. 2024 Aug 10;10(18):e36134. doi: 10.1016/j.heliyon.2024.e36134. eCollection 2024 Sep 30.

Abstract

:Short-term rainfall prediction is a crucial and practical research area, with the accuracy of rainfall prediction, particularly for heavy rainfall, significantly impacting people's lives, property, and even their safety. Existing models, such as ConvLSTM, TrajGRU, and PredRNN, exhibit limitations in capturing fine-grained appearances due to insufficient memory units or addressing positional misalignment issues, thereby compromising the accuracy of model predictions. In this study, we propose trajPredRNN+, an innovative approach that integrates the trajectory segmentation model and the PredRNN deep learning model to address both limitations in nowcasting precipitation using weather radar echo images. By incorporating attention mechanisms, the model demonstrates an enhanced focus on short-term and imminent heavy rainfall events. To ensure improved stability during training, a residual network is introduced. Lastly, a more rational and effective training loss function is proposed, encompassing weight mechanism, SSIM index, and GAN loss. To validate the proposed model, we conducted a comparative experiment and an ablation experiment using the radar echo map dataset obtained from the Shenzhen Meteorological Bureau. The results of these experiments demonstrate that our model has achieved significant improvements across multiple key performance indicators.

摘要

短期降雨预测是一个至关重要且具有实际意义的研究领域,降雨预测的准确性,尤其是强降雨预测的准确性,会对人们的生命、财产乃至安全产生重大影响。现有的模型,如ConvLSTM、TrajGRU和PredRNN,由于存储单元不足或存在位置错位问题,在捕捉细粒度外观方面存在局限性,从而影响了模型预测的准确性。在本研究中,我们提出了trajPredRNN+,这是一种创新方法,它将轨迹分割模型和PredRNN深度学习模型相结合,以解决利用天气雷达回波图像进行临近降水预报时的这两个局限性。通过引入注意力机制,该模型对短期和即将到来的强降雨事件表现出更强的关注。为确保训练期间的稳定性得到提高,引入了残差网络。最后,提出了一种更合理、有效的训练损失函数,包括权重机制、结构相似性指数(SSIM)和生成对抗网络(GAN)损失。为验证所提出的模型,我们使用从深圳市气象局获得的雷达回波地图数据集进行了对比实验和消融实验。这些实验结果表明,我们的模型在多个关键性能指标上都取得了显著改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d34/11415647/fd07851f674d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验