Suppr超能文献

MLAM:基于时空序列神经网络的雷达外推多层注意力模块

MLAM: Multi-Layer Attention Module for Radar Extrapolation Based on Spatiotemporal Sequence Neural Network.

作者信息

Wang Shengchun, Wang Tianyang, Wang Sihong, Fang Zixiong, Huang Jingui, Zhou Zuxi

机构信息

College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.

College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

出版信息

Sensors (Basel). 2023 Sep 25;23(19):8065. doi: 10.3390/s23198065.

Abstract

Precipitation nowcasting is mainly achieved by the radar echo extrapolation method. Due to the timing characteristics of radar echo extrapolation, convolutional recurrent neural networks (ConvRNNs) have been used to solve the task. Most ConvRNNs have been proven to perform far better than traditional optical flow methods, but they still have fatal problems. These models lack differentiation in the prediction of echoes of different intensities, which leads to the omission of responses from regions with high intensities. Moreover, because it is difficult for these models to capture long-term feature dependencies among multiple echo maps, the extrapolation effect declines sharply over time. This paper proposes an embedded multi-layer attention module (MLAM) to address the shortcomings of ConvRNNs. Specifically, an MLAM mainly enhances attention to critical regions in echo images and the processing of long-term spatiotemporal features through the interaction between input and memory features in the current moment. Comprehensive experiments were conducted on the radar dataset HKO-7 provided by the Hong Kong Observatory and the radar dataset HMB provided by the Hunan Meteorological Bureau. Experiments show that ConvRNNs embedded with MLAMs achieve more advanced results than standard ConvRNNs.

摘要

降水临近预报主要通过雷达回波外推法实现。由于雷达回波外推的时间特性,卷积递归神经网络(ConvRNNs)已被用于解决该任务。大多数ConvRNNs已被证明比传统光流方法表现得好得多,但它们仍然存在致命问题。这些模型在不同强度回波的预测中缺乏区分能力,这导致高强度区域的响应被遗漏。此外,由于这些模型难以捕捉多个回波图之间的长期特征依赖关系,随着时间的推移,外推效果会急剧下降。本文提出了一种嵌入式多层注意力模块(MLAM)来解决ConvRNNs的缺点。具体来说,一个MLAM主要通过当前时刻输入特征与记忆特征之间的交互,增强对回波图像中关键区域的注意力以及对长期时空特征的处理。在香港天文台提供的雷达数据集HKO - 7和湖南省气象局提供的雷达数据集HMB上进行了综合实验。实验表明,嵌入MLAMs的ConvRNNs比标准ConvRNNs取得了更先进的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e1e/10575230/a8c0a0678070/sensors-23-08065-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验