Momen Mehdi, Campbell Malachy T, Walia Harkamal, Morota Gota
1Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Drive, Blacksburg, VA 24061 USA.
2Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA.
Plant Methods. 2019 Sep 18;15:107. doi: 10.1186/s13007-019-0493-x. eCollection 2019.
Plant breeders seek to develop cultivars with maximal agronomic value, which is often assessed using numerous, often genetically correlated traits. As intervention on one trait will affect the value of another, breeding decisions should consider the relationships among traits in the context of putative causal structures (i.e., trait networks). While multi-trait genome-wide association studies (MTM-GWAS) can infer putative genetic signals at the multivariate scale, standard MTM-GWAS does not accommodate the network structure of phenotypes, and therefore does not address how the traits are interrelated. We extended the scope of MTM-GWAS by incorporating trait network structures into GWAS using structural equation models (SEM-GWAS). Here, we illustrate the utility of SEM-GWAS using a digital metric for shoot biomass, root biomass, water use, and water use efficiency in rice.
A salient feature of SEM-GWAS is that it can partition the total single nucleotide polymorphism (SNP) effects acting on a trait into direct and indirect effects. Using this novel approach, we show that for most QTL associated with water use, total SNP effects were driven by genetic effects acting directly on water use rather that genetic effects originating from upstream traits. Conversely, total SNP effects for water use efficiency were largely due to indirect effects originating from the upstream trait, projected shoot area.
We describe a robust framework that can be applied to multivariate phenotypes to understand the interrelationships between complex traits. This framework provides novel insights into how QTL act within a phenotypic network that would otherwise not be possible with conventional multi-trait GWAS approaches. Collectively, these results suggest that the use of SEM may enhance our understanding of complex relationships among agronomic traits.
植物育种者致力于培育具有最大农艺价值的品种,这通常通过众多往往具有遗传相关性的性状来评估。由于对一个性状的干预会影响另一个性状的价值,育种决策应在假定的因果结构(即性状网络)背景下考虑性状之间的关系。虽然多性状全基因组关联研究(MTM - GWAS)可以在多变量尺度上推断假定的遗传信号,但标准的MTM - GWAS不考虑表型的网络结构,因此没有解决性状是如何相互关联的问题。我们通过使用结构方程模型将性状网络结构纳入全基因组关联研究(SEM - GWAS)来扩展MTM - GWAS的范围。在这里,我们使用水稻地上部生物量、根系生物量、水分利用和水分利用效率的数字指标来说明SEM - GWAS的效用。
SEM - GWAS的一个显著特征是它可以将作用于一个性状的总单核苷酸多态性(SNP)效应分为直接效应和间接效应。使用这种新方法,我们表明,对于大多数与水分利用相关的数量性状基因座(QTL),总SNP效应是由直接作用于水分利用的遗传效应驱动的,而不是源于上游性状的遗传效应。相反,水分利用效率的总SNP效应在很大程度上归因于源于上游性状(投影地上部面积)的间接效应。
我们描述了一个稳健的框架,可应用于多变量表型以理解复杂性状之间的相互关系。这个框架为QTL在表型网络中的作用方式提供了新的见解,而传统的多性状GWAS方法则无法做到这一点。总体而言,这些结果表明,使用结构方程模型可能会增强我们对农艺性状之间复杂关系的理解。