Huang Yufan, Qi Junzi, An Bingrui, Zhang Bensheng, Yang Yukang, Cheng Cheng, He Bingfang
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
Front Bioeng Biotechnol. 2025 Apr 24;13:1587546. doi: 10.3389/fbioe.2025.1587546. eCollection 2025.
The exceptional mechanical properties, biocompatibility, and biodegradability of spider silk make it a promising biomaterial, yet large-scale production remains hindered by challenges in heterologous expression. Existing prokaryotic systems face bottlenecks due to spidroins' high molecular weight, repetitive sequences, and GC-rich motifs, leading to low yields, premature transcription termination, and insoluble inclusion bodies. Addressing these challenges, the study integrates deep learning and bioengineering to design water-soluble, β-sheet-rich spidroin mimics optimized for efficient prokaryotic expression. By replacing polyalanine motifs in s MaSp1 with computationally screened sequences (e.g., ITVQQ from OspA), five functional spidroins were engineered and solubly expressed in , achieving yields up to 0.99 g/L. Circular dichroism revealed that modified spidroins (e.g., 3rep-ITVQQ) exhibited β-sheet content up to 81.3% under thermal induction, surpassing unmodified MaSp1 (41.5%). Structural analysis via SEM demonstrated dense, uniform networks in 3rep-ITVQQ, correlating with enhanced mechanical potential. And 24rep-ITVQQ nanofibers were successfully prepared by electrostatic spinning. Coarse-grained molecular dynamics simulations validated progressive self-assembly with reduced solvent-accessible surface area over 1,000 ns. This work bridges the gap between sequence design and scalable production by overcoming expression barriers, simplifying purification, and leveraging β-sheet stacking for tunable mechanical properties. The results provide a blueprint for high-performance biomimetic fibers, advancing applications (e.g., surgical sutures, scaffolds) in tissue engineering and functional materials while addressing the limitations of conventional spidroin production systems.
蜘蛛丝卓越的机械性能、生物相容性和生物降解性使其成为一种很有前景的生物材料,但异源表达方面的挑战阻碍了其大规模生产。现有的原核系统面临瓶颈,因为蛛丝蛋白分子量高、序列重复且富含GC基序,导致产量低、转录提前终止以及形成不溶性包涵体。为应对这些挑战,该研究将深度学习与生物工程相结合,设计出了针对高效原核表达进行优化的水溶性、富含β折叠的蛛丝蛋白模拟物。通过用经计算筛选的序列(如来自OspA的ITVQQ)替换sMaSp1中的聚丙氨酸基序,构建了五种功能性蛛丝蛋白并在大肠杆菌中实现了可溶性表达,产量高达0.99 g/L。圆二色性表明,经修饰的蛛丝蛋白(如3rep-ITVQQ)在热诱导下β折叠含量高达81.3%,超过未修饰的MaSp1(41.5%)。通过扫描电子显微镜进行的结构分析表明,3rep-ITVQQ中存在致密、均匀的网络,这与增强的机械潜力相关。并且通过静电纺丝成功制备了24rep-ITVQQ纳米纤维。粗粒度分子动力学模拟验证了在超过1000 ns的时间内,随着溶剂可及表面积的减小,其逐步自组装过程。这项工作通过克服表达障碍、简化纯化并利用β折叠堆积实现可调机械性能,弥合了序列设计与可扩展生产之间的差距。研究结果为高性能仿生纤维提供了蓝图,推动了组织工程和功能材料领域(如手术缝线、支架)的应用,同时解决了传统蛛丝蛋白生产系统的局限性。
Front Bioeng Biotechnol. 2025-4-24
J Mech Behav Biomed Mater. 2011-7-26
Adv Sci (Weinh). 2024-6
Int J Mol Sci. 2020-9-20
Biomater Sci. 2023-3-14
ACS Biomater Sci Eng. 2021-7-12
ACS Biomater Sci Eng. 2017-11-13
Materials (Basel). 2020-8-14
J Mater Chem B. 2020-8-12