Suppr超能文献

晶体生长动力学是制约软体动物壳结构演化的结构因素。

Crystal growth kinetics as an architectural constraint on the evolution of molluscan shells.

机构信息

B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.

Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, 1525 Budapest, Hungary.

出版信息

Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20388-20397. doi: 10.1073/pnas.1907229116. Epub 2019 Sep 24.

Abstract

Molluscan shells are a classic model system to study formation-structure-function relationships in biological materials and the process of biomineralized tissue morphogenesis. Typically, each shell consists of a number of highly mineralized ultrastructures, each characterized by a specific 3D mineral-organic architecture. Surprisingly, in some cases, despite the lack of a mutual biochemical toolkit for biomineralization or evidence of homology, shells from different independently evolved species contain similar ultrastructural motifs. In the present study, using a recently developed physical framework, which is based on an analogy to the process of directional solidification and simulated by phase-field modeling, we compare the process of ultrastructural morphogenesis of shells from 3 major molluscan classes: A bivalve , a cephalopod , and a gastropod We demonstrate that the fabrication of these tissues is guided by the organisms by regulating the chemical and physical boundary conditions that control the growth kinetics of the mineral phase. This biomineralization concept is postulated to act as an architectural constraint on the evolution of molluscan shells by defining a morphospace of possible shell ultrastructures that is bounded by the thermodynamics and kinetics of crystal growth.

摘要

软体动物壳是研究生物材料的形成-结构-功能关系和生物矿化组织形态发生过程的经典模式系统。通常,每个壳由许多高度矿化的超结构组成,每个超结构都具有特定的 3D 矿物-有机结构。令人惊讶的是,在某些情况下,尽管缺乏用于生物矿化的共同生化工具包或同源性的证据,但来自不同独立进化的物种的壳包含相似的超结构模式。在本研究中,我们使用最近开发的物理框架,该框架基于对定向凝固过程的类比,并通过相场模拟进行模拟,比较了来自 3 个主要软体动物类群的壳的超结构形态发生过程:双壳类、头足类和腹足类。我们证明,这些组织的制造是由生物体通过调节控制矿物相生长动力学的化学和物理边界条件来指导的。这种生物矿化概念被假定为通过定义由晶体生长的热力学和动力学限定的可能壳超结构的形态空间来对软体动物壳的进化起结构约束作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6725/6789867/661539cc6639/pnas.1907229116fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验