Suppr超能文献

软体动物和珊瑚生物矿化的相场建模:微观结构与形成机制

Phase-Field Modeling of Biomineralization in Mollusks and Corals: Microstructure vs Formation Mechanism.

作者信息

Gránásy László, Rátkai László, Tóth Gyula I, Gilbert Pupa U P A, Zlotnikov Igor, Pusztai Tamás

机构信息

Laboratory of Advanced Structural Studies, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.

Brunel Centre of Advanced Solidification Technology, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.

出版信息

JACS Au. 2021 Jul 26;1(7):1014-1033. doi: 10.1021/jacsau.1c00026. Epub 2021 Jun 4.

Abstract

While biological crystallization processes have been studied on the microscale extensively, there is a general lack of models addressing the mesoscale aspects of such phenomena. In this work, we investigate whether the phase-field theory developed in materials' science for describing complex polycrystalline structures on the mesoscale can be meaningfully adapted to model crystallization in biological systems. We demonstrate the abilities of the phase-field technique by modeling a range of microstructures observed in mollusk shells and coral skeletons, including granular, prismatic, sheet/columnar nacre, and sprinkled spherulitic structures. We also compare two possible micromechanisms of calcification: the classical route, via ion-by-ion addition from a fluid state, and a nonclassical route, crystallization of an amorphous precursor deposited at the solidification front. We show that with an appropriate choice of the model parameters, microstructures similar to those found in biomineralized systems can be obtained along both routes, though the time-scale of the nonclassical route appears to be more realistic. The resemblance of the simulated and natural biominerals suggests that, underneath the immense biological complexity observed in living organisms, the underlying design principles for biological structures may be understood with simple math and simulated by phase-field theory.

摘要

虽然生物结晶过程已在微观尺度上得到广泛研究,但普遍缺乏能够处理此类现象中尺度方面的模型。在这项工作中,我们研究材料科学中为描述中尺度复杂多晶结构而发展的相场理论是否能有意义地适用于对生物系统中的结晶进行建模。我们通过对在软体动物壳和珊瑚骨骼中观察到的一系列微观结构进行建模来展示相场技术的能力,这些结构包括颗粒状、棱柱形、片状/柱状珍珠层以及散布的球晶结构。我们还比较了两种可能的钙化微观机制:经典途径,即从流体状态逐个离子添加;以及非经典途径,即在凝固前沿沉积的无定形前体的结晶。我们表明,通过适当选择模型参数,沿着这两条途径都可以获得与生物矿化系统中发现的微观结构相似的结构,尽管非经典途径的时间尺度似乎更符合实际。模拟生物矿物与天然生物矿物的相似性表明,在生物体中观察到的巨大生物复杂性之下,生物结构的潜在设计原则可能可以通过简单的数学来理解,并由相场理论进行模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4f5/8395612/9c17d8e1dd7e/au1c00026_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验