Suppr超能文献

静息态功能磁共振成像信号的固有频率:功能连接的频率依赖性及模式混合的影响

Intrinsic Frequencies of the Resting-State fMRI Signal: The Frequency Dependence of Functional Connectivity and the Effect of Mode Mixing.

作者信息

Yuen Nicole H, Osachoff Nathaniel, Chen J Jean

机构信息

Rotman Research Institute at Baycrest, Toronto, ON, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.

出版信息

Front Neurosci. 2019 Sep 4;13:900. doi: 10.3389/fnins.2019.00900. eCollection 2019.

Abstract

The frequency characteristics of the resting-state BOLD fMRI (rs-fMRI) signal are of increasing scientific interest, as we discover more frequency-specific biological interpretations. In this work, we use variational mode decomposition (VMD) to precisely decompose the rs-fMRI time series into its intrinsic mode functions (IMFs) in a data-driven manner. The accuracy of the VMD decomposition of constituent IMFs is verified through simulations, with higher reconstruction accuracy and much-reduced mode mixing relative to previous methods. Furthermore, we examine the relative contribution of the VMD-derived modes (frequencies) to the rs-fMRI signal as well as functional connectivity measurements. Our primary findings are: (1) The rs-fMRI signal within the 0.01-0.25 Hz range can be consistently characterized by four intrinsic frequency clusters, centered at 0.028 Hz (IMF4), 0.080 Hz (IMF3), 0.15 Hz (IMF2) and 0.22 Hz (IMF1); (2) these frequency clusters were highly reproducible, and independent of rs-fMRI data sampling rate; (3) not all frequencies were associated with equivalent network topology, in contrast to previous findings. In fact, while IMF4 is most likely associated with physiological fluctuations due to respiration and pulse, IMF3 is most likely associated with metabolic processes, and IMF2 with vasomotor activity. Both IMF3 and IMF4 could produce the brain-network topology typically observed in fMRI, whereas IMF1 and IMF2 could not. These findings provide initial evidence of feasibility in decomposing the rs-fMRI signal into its intrinsic oscillatory frequencies in a reproducible manner.

摘要

随着我们发现更多特定频率的生物学解释,静息态血氧水平依赖性功能磁共振成像(rs-fMRI)信号的频率特征越来越受到科学界的关注。在这项工作中,我们使用变分模态分解(VMD)以数据驱动的方式将rs-fMRI时间序列精确分解为其固有模态函数(IMF)。通过模拟验证了组成IMF的VMD分解的准确性,相对于以前的方法,具有更高的重建精度和大大减少的模态混叠。此外,我们研究了VMD衍生模式(频率)对rs-fMRI信号以及功能连接测量的相对贡献。我们的主要发现是:(1)在0.01 - 0.25 Hz范围内的rs-fMRI信号可以由四个固有频率簇一致地表征,中心频率分别为0.028 Hz(IMF4)、0.080 Hz(IMF3)、0.15 Hz(IMF2)和0.22 Hz(IMF1);(2)这些频率簇具有高度可重复性,并且与rs-fMRI数据采样率无关;(3)与先前的发现相反,并非所有频率都与等效的网络拓扑相关。事实上,虽然IMF4最有可能与呼吸和脉搏引起的生理波动相关,IMF3最有可能与代谢过程相关,IMF2与血管舒缩活动相关。IMF3和IMF4都可以产生功能磁共振成像中通常观察到的脑网络拓扑结构,而IMF1和IMF2则不能。这些发现为以可重复的方式将rs-fMRI信号分解为其固有振荡频率的可行性提供了初步证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d651/6738198/82127ede6237/fnins-13-00900-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验