Suppr超能文献

验证 Brandwein Gensler 风险模型在印度北部口腔鳞状细胞癌患者中的应用。

Validation of the Brandwein Gensler Risk Model in Patients of Oral Cavity Squamous Cell Carcinoma in North India.

机构信息

Department of Surgical Oncology, King George's Medical University, Lucknow, India.

Department of Pathology, RML Institute of Medical Sciences, Lucknow, India.

出版信息

Head Neck Pathol. 2020 Sep;14(3):616-622. doi: 10.1007/s12105-019-01082-6. Epub 2019 Sep 24.

Abstract

India has one of the highest incidences of oral squamous cell carcinoma (OSCC), with 75,000-80,000 new cases a year. The outcome in early oral cancer is better, but a significant proportion (12-14%) of these patients still relapses and dies due to locoregional or distant recurrences. Several clinicopathological and molecular factors have been used to prognosticate and predict outcomes in these patients of OSCC. The present study aims to validate Brandwein Gensler (BG) risk predictive model in surgically treated OSCC patients in a tertiary care centre in North India. All oral cavity cancer patients, treated in the Department of Surgical Oncology, King George's Medical University, between 2013 and 2017, were reviewed. Patients with histologically diagnosed OSCC, aged > 18 years undergoing primary surgical resection were included in the study. The final histopathological evaluation was done by a dedicated pathologist to categorize patients according to BG model risk categories. This model comprises of three factors, lymphocytic host response, perineural invasion and worst pattern of invasion, scored by the method described by Brandwein Gensler et al. The sum of these scores is used to define low, moderate and high risk categories. The study, conducted during 2013-2017, included 149 patients. Median age was 45 years (range 25-75 years). Tobacco use was noted in 143 patients. Buccal mucosa was the most common site (51%). Surgical margins were clear (> 5 mm) in 97.9% cases. Postoperative radiotherapy was given in 47.7% patients. Locoregional recurrences (LRR) (primary site and neck) were documented in 17 of the 149 patients (11.4%). There was no synchronous or metachronous distant metastasis noted in any of the study patients. Six patients had disease specific mortality. Among the 17 patients with LRR, majority (11) belonged to the high risk category of the BG risk model. Adjuvant radiotherapy had been administered in 10 of these 11 recurrent patients belonging to the high risk category. The Brandwein Gensler risk model is predictive of locoregional recurrences (p = 0.02) for OSCC undergoing primary surgery. It can be used to devise strategies to prevent recurrences or identification of recurrences at an earlier point for salvage. The benefit of further escalation of adjuvant therapy in the high risk category needs further studies, as 90% patients in this group recurred despite complete adjuvant treatment.

摘要

印度是口腔鳞状细胞癌(OSCC)发病率最高的国家之一,每年有 75,000-80,000 例新发病例。早期口腔癌的预后较好,但这些患者中有相当一部分(12-14%)仍因局部或远处复发而复发和死亡。已经使用了几种临床病理和分子因素来预测和预测这些 OSCC 患者的预后。本研究旨在验证 Brandwein Gensler(BG)风险预测模型在印度北部一家三级保健中心接受手术治疗的 OSCC 患者中的应用。对 2013 年至 2017 年间在外科肿瘤学系接受治疗的所有口腔癌患者进行了回顾性分析。纳入了组织学诊断为 OSCC、年龄>18 岁、接受原发性手术切除的患者。最终的组织病理学评估由专门的病理学家进行,以根据 BG 模型风险类别对患者进行分类。该模型包含三个因素,淋巴细胞宿主反应、神经周围侵犯和最严重的侵犯模式,由 Brandwein Gensler 等人描述的方法进行评分。这些分数的总和用于定义低、中和高风险类别。这项研究于 2013-2017 年进行,共纳入 149 例患者。中位年龄为 45 岁(范围 25-75 岁)。143 例患者有吸烟史。颊黏膜是最常见的部位(51%)。97.9%的病例手术切缘清晰(>5mm)。47.7%的患者接受了术后放疗。149 例患者中有 17 例(11.4%)记录到局部区域复发(LRR)(原发部位和颈部)。研究中没有任何患者同时或异时发生远处转移。6 例患者死于疾病特异性死亡。在 17 例局部区域复发患者中,大多数(11 例)属于 BG 风险模型的高危类别。在属于高危类别的 11 例复发病例中,有 10 例接受了辅助放疗。Brandwein Gensler 风险模型可预测接受初次手术的 OSCC 患者的局部区域复发(p=0.02)。它可以用于制定策略来预防复发或更早地发现复发以进行挽救。在高危组中进一步增加辅助治疗的益处需要进一步研究,因为尽管接受了完全辅助治疗,但该组 90%的患者仍复发。

相似文献

1
Validation of the Brandwein Gensler Risk Model in Patients of Oral Cavity Squamous Cell Carcinoma in North India.
Head Neck Pathol. 2020 Sep;14(3):616-622. doi: 10.1007/s12105-019-01082-6. Epub 2019 Sep 24.
2
Histological risk score and its role in predicting recurrence in early-stage oral squamous cell carcinomas.
Indian J Pathol Microbiol. 2023 Jul-Sep;66(3):444-448. doi: 10.4103/ijpm.ijpm_514_21.
3
Protocol for correlation of histological risk assessment/scoring system with a depth of invasion in oral squamous cell carcinoma.
F1000Res. 2024 May 31;12:1326. doi: 10.12688/f1000research.134757.2. eCollection 2023.
4
Assessment of Bone Invasion and Its Correlation With Brandwein-Gensler Criteria in Oral Squamous Cell Carcinoma.
Cureus. 2024 May 27;16(5):e61194. doi: 10.7759/cureus.61194. eCollection 2024 May.
6
Reframing Histological Risk Assessment of Oral Squamous Cell Carcinoma in the Era of UICC 8th Edition TNM Staging.
Head Neck Pathol. 2021 Mar;15(1):202-211. doi: 10.1007/s12105-020-01201-8. Epub 2020 Jul 13.
8
Tumor-host interface in oral squamous cell carcinoma: Impact on nodal metastasis and prognosis.
Eur Arch Otorhinolaryngol. 2021 Dec;278(12):5029-5039. doi: 10.1007/s00405-021-06756-y. Epub 2021 Mar 20.
10
Prospective evaluation of outcome after transoral CO(2) laser resection of T1/T2 oral squamous cell carcinoma.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Aug;112(2):180-7. doi: 10.1016/j.tripleo.2010.09.078. Epub 2011 Jan 12.

引用本文的文献

1
Protocol for correlation of histological risk assessment/scoring system with a depth of invasion in oral squamous cell carcinoma.
F1000Res. 2024 May 31;12:1326. doi: 10.12688/f1000research.134757.2. eCollection 2023.
2
Assessment of Bone Invasion and Its Correlation With Brandwein-Gensler Criteria in Oral Squamous Cell Carcinoma.
Cureus. 2024 May 27;16(5):e61194. doi: 10.7759/cureus.61194. eCollection 2024 May.
3
Relevance of Tumor Budding and Pattern of Invasion in Oral Squamous Cell Carcinoma.
Int J Appl Basic Med Res. 2024 Jan-Mar;14(1):29-34. doi: 10.4103/ijabmr.ijabmr_391_23. Epub 2024 Feb 20.
5
Development of a Machine Learning Model to Predict Recurrence of Oral Tongue Squamous Cell Carcinoma.
Cancers (Basel). 2023 May 16;15(10):2769. doi: 10.3390/cancers15102769.
6
WPOI-5: Accurately Identified at Intraoperative Consultation and Predictive of Occult Cervical Metastases.
Head Neck Pathol. 2023 Jun;17(2):479-486. doi: 10.1007/s12105-023-01533-1. Epub 2023 Feb 28.
7
Relationship Between Worst Pattern of Invasion and Extranodal Extension in Oral Tongue Squamous Cell Carcinomas.
Head Neck Pathol. 2023 Jun;17(2):460-466. doi: 10.1007/s12105-023-01531-3. Epub 2023 Feb 1.
9
Histology segmentation using active learning on regions of interest in oral cavity squamous cell carcinoma.
J Pathol Inform. 2022 Sep 27;13:100146. doi: 10.1016/j.jpi.2022.100146. eCollection 2022.
10
CRISPR-based kinome-screening revealed MINK1 as a druggable player to rewire 5FU-resistance in OSCC through AKT/MDM2/p53 axis.
Oncogene. 2022 Nov;41(45):4929-4940. doi: 10.1038/s41388-022-02475-8. Epub 2022 Oct 1.

本文引用的文献

1
Gene Expression Subtype Predicts Nodal Metastasis and Survival in Human Papillomavirus-Negative Head and Neck Cancer.
Laryngoscope. 2019 Jan;129(1):154-161. doi: 10.1002/lary.27340. Epub 2018 Sep 24.
4
Cancer mortality in India: a nationally representative survey.
Lancet. 2012 May 12;379(9828):1807-16. doi: 10.1016/S0140-6736(12)60358-4. Epub 2012 Mar 28.
5
Validation of the histologic risk model in a new cohort of patients with head and neck squamous cell carcinoma.
Am J Surg Pathol. 2010 May;34(5):676-88. doi: 10.1097/PAS.0b013e3181d95c37.
6
Oral tongue squamous cell carcinoma: recurrent disease is associated with histopathologic risk score and young age.
J Cancer Res Clin Oncol. 2010 Jul;136(7):1039-48. doi: 10.1007/s00432-009-0749-3. Epub 2010 Jan 7.
7
The impact of lymphovascular invasion on survival in oral carcinoma.
Oral Oncol. 2009 Jan;45(1):10-5. doi: 10.1016/j.oraloncology.2008.03.009. Epub 2008 Jul 11.
8
Oral squamous cell carcinoma: review of prognostic and predictive factors.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Jul;102(1):67-76. doi: 10.1016/j.tripleo.2005.07.038. Epub 2006 Jan 10.
10
Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival.
J Oral Maxillofac Surg. 2003 Jul;61(7):751-8. doi: 10.1016/s0278-2391(03)00149-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验