Suppr超能文献

氟化物封端的纳米氧化铈作为一种高效的氧化酶模拟纳米酶:抑制产物吸附和增加氧空位。

Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies.

机构信息

Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.

出版信息

Nanoscale. 2019 Oct 3;11(38):17841-17850. doi: 10.1039/c9nr05346h.

Abstract

Nanozymes aim to mimic enzyme activities using nanomaterials. Nanoceria (CeO2 nanoparticles) is an important model nanozyme for its rich redox chemistry. In particular, its oxidase-like activity allows oxidation reactions without the need of unstable and toxic H2O2. Fluoride can significantly improve its oxidase-like activity, and this work aims to understand the mechanism of fluoride-promoted catalysis. First, fluoride can adsorb on CeO2 tighter than other halides, but not as strong as phosphate as characterized by isothermal titration calorimetry (ITC). FT-IR spectroscopy indicates adsorption of fluoride likely via exchange with surface hydroxide groups. Fluoride capping inverses the surface charge of CeO2, facilitating desorption of the ABTS oxidation product, significantly increasing the turnover number. The Raman, EPR and XPS spectroscopy results demonstrate that the concentration of Ce3+ and the accompanying oxygen vacancy significantly increased upon adding F-, which can explain the enhanced catalytic activity. Finally, the electron transfer properties of fluoride-capped CeO2 were more efficient than that of the bare CeO2 as determined by a direct electrochemical measurement on a glass carbon electrode. This study has provided new insight into nanoceria, and can also further confirm the role of nanoceria as a model for engineering the surface of nanozymes.

摘要

纳米酶旨在利用纳米材料模拟酶的活性。纳米氧化铈(CeO2 纳米颗粒)是一种重要的模型纳米酶,因其丰富的氧化还原化学而受到关注。特别是,其氧化酶样活性允许在不需要不稳定和有毒的 H2O2 的情况下进行氧化反应。氟化物可以显著提高其氧化酶样活性,本工作旨在了解氟化物促进催化的机制。首先,氟化物可以比其他卤化物更紧密地吸附在 CeO2 上,但不如磷酸盐强,这可以通过等温滴定量热法(ITC)来表征。傅里叶变换红外光谱(FT-IR)表明,氟化物的吸附可能是通过与表面羟基基团的交换来实现的。氟化物封端使 CeO2 的表面电荷反转,促进 ABTS 氧化产物的解吸,从而显著提高了转化数。拉曼、EPR 和 XPS 光谱结果表明,添加 F-后 Ce3+的浓度和伴随的氧空位显著增加,这可以解释催化活性的增强。最后,通过在玻璃碳电极上进行直接电化学测量,确定了氟化物封端的 CeO2 的电子转移性质比裸露的 CeO2 更有效。这项研究为纳米氧化铈提供了新的见解,也可以进一步证实纳米氧化铈作为纳米酶表面工程模型的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验