Suppr超能文献

基于 SNP 的配种策略以最大化猪的总遗传价值。

SNP-based mate allocation strategies to maximize total genetic value in pigs.

机构信息

GenPhySE, INRA, Université de Toulouse, 31326, Castanet-Tolosan, France.

IFIP Institut du Porc, BP35104, 35651, Le Rheu, France.

出版信息

Genet Sel Evol. 2019 Sep 27;51(1):55. doi: 10.1186/s12711-019-0498-y.

Abstract

BACKGROUND

Mate allocation strategies that account for non-additive genetic effects can be used to maximize the overall genetic merit of future offspring. Accounting for dominance effects in genetic evaluations is easier in a genomic context, than in a classical pedigree-based context because the combinations of alleles at loci are known. The objective of our study was two-fold. First, dominance variance components were estimated for age at 100 kg (AGE), backfat depth (BD) at 140 days, and for average piglet weight at birth within litter (APWL). Second, the efficiency of mate allocation strategies that account for dominance and inbreeding depression to maximize the overall genetic merit of future offspring was explored.

RESULTS

Genetic variance components were estimated using genomic models that included inbreeding depression with and without non-additive genetic effects (dominance). Models that included dominance effects did not fit the data better than the genomic additive model. Estimates of dominance variances, expressed as a percentage of additive genetic variance, were 20, 11, and 12% for AGE, BD, and APWL, respectively. Estimates of additive and dominance single nucleotide polymorphism effects were retrieved from the genetic variance component estimates and used to predict the outcome of matings in terms of total genetic and breeding values. Maximizing total genetic values instead of breeding values in matings gave the progeny an average advantage of - 0.79 days, - 0.04 mm, and 11.3 g for AGE, BD and APWL, respectively, but slightly reduced the expected additive genetic gain, e.g. by 1.8% for AGE.

CONCLUSIONS

Genomic mate allocation accounting for non-additive genetic effects is a feasible and potential strategy to improve the performance of the offspring without dramatically compromising additive genetic gain.

摘要

背景

考虑非加性遗传效应的配种策略可用于最大限度地提高未来后代的整体遗传优势。在基因组背景下,与经典的基于系谱的背景相比,更容易在遗传评估中考虑显性效应,因为已知基因座上等位基因的组合。我们研究的目的有两个。首先,估计了 100 公斤龄(AGE)、140 天背膘厚(BD)和窝产平均初生重(APWL)的显性方差分量。其次,探索了考虑显性和近交衰退来最大化未来后代整体遗传优势的配种策略的效率。

结果

使用包含有和没有非加性遗传效应(显性)的近交衰退的基因组模型估计遗传方差分量。包含显性效应的模型并不比基因组加性模型更适合数据。以加性遗传方差的百分比表示的显性方差估计值分别为 AGE、BD 和 APWL 的 20%、11%和 12%。从遗传方差分量估计中提取了加性和显性单核苷酸多态性效应的估计值,并用于根据总遗传和育种值预测交配的结果。在交配中最大化总遗传值而不是育种值,使后代平均优势分别为 AGE、BD 和 APWL 的-0.79 天、-0.04 毫米和 11.3 克,但略微降低了预期的加性遗传增益,例如 AGE 的增益降低了 1.8%。

结论

考虑非加性遗传效应的基因组配种策略是一种可行且有潜力的策略,可以在不显著降低加性遗传增益的情况下提高后代的性能。

相似文献

引用本文的文献

4
Progress in Genomic Mating in Domestic Animals.家畜基因组选配的进展
Animals (Basel). 2022 Sep 6;12(18):2306. doi: 10.3390/ani12182306.

本文引用的文献

2
Non-additive Effects in Genomic Selection.基因组选择中的非加性效应。
Front Genet. 2018 Mar 6;9:78. doi: 10.3389/fgene.2018.00078. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验