Herbert Robert, Mishra Saswat, Lim Hyo-Ryoung, Yoo Hyoungsuk, Yeo Woon-Hong
George W. Woodruff School of Mechanical Engineering Institute for Electronics and Nanotechnology Georgia Institute of Technology Atlanta GA 30332 USA.
Department of Biomedical Engineering Hanyang University Seoul 04763 South Korea.
Adv Sci (Weinh). 2019 Aug 7;6(18):1901034. doi: 10.1002/advs.201901034. eCollection 2019 Sep 18.
This study introduces a high-throughput, large-scale manufacturing method that uses aerosol jet 3D printing for a fully printed stretchable, wireless electronics. A comprehensive study of nanoink preparation and parameter optimization enables a low-profile, multilayer printing of a high-performance, capacitance flow sensor. The core printing process involves direct, microstructured patterning of biocompatible silver nanoparticles and polyimide. The optimized fabrication approach allows for transfer of highly conductive, patterned silver nanoparticle films to a soft elastomeric substrate. Stretchable mechanics modeling and seamless integration with an implantable stent display a highly stretchable and flexible sensor, deployable by a catheter for extremely low-profile, conformal insertion in a blood vessel. Optimization of a transient, wireless inductive coupling method allows for wireless detection of biomimetic cerebral aneurysm hemodynamics with the maximum readout distance of 6 cm through meat. In vitro demonstrations include wireless monitoring of flow rates (0.05-1 m s) in highly contoured and narrow human neurovascular models. Collectively, this work shows the potential of the printed biosystem to offer a high throughput, additive manufacturing of stretchable electronics with advances toward batteryless, real-time wireless monitoring of cerebral aneurysm hemodynamics.
本研究介绍了一种高通量、大规模制造方法,该方法利用气溶胶喷射3D打印技术来制造完全打印的可拉伸无线电子产品。对纳米墨水制备和参数优化的全面研究实现了高性能电容式流量传感器的低轮廓多层打印。核心打印过程涉及生物相容性银纳米颗粒和聚酰亚胺的直接微结构化图案化。优化后的制造方法能够将高导电性的图案化银纳米颗粒薄膜转移到柔软的弹性体基板上。可拉伸力学建模以及与可植入支架的无缝集成展示了一种高度可拉伸且灵活的传感器,可通过导管部署,以极低的轮廓在血管中进行贴合插入。对瞬态无线感应耦合方法的优化使得能够通过肉类对仿生脑动脉瘤血流动力学进行无线检测,最大读出距离为6厘米。体外演示包括在高度轮廓化和狭窄的人类神经血管模型中对流速(0.05 - 1米/秒)进行无线监测。总体而言,这项工作展示了打印生物系统在提供可拉伸电子产品的高通量增材制造方面的潜力,并朝着无电池实时无线监测脑动脉瘤血流动力学迈进。