George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Appl Mater Interfaces. 2020 Jun 3;12(22):25020-25030. doi: 10.1021/acsami.0c04857. Epub 2020 May 22.
Soft strain sensors that are mechanically flexible or stretchable are of significant interest in the fields of structural health monitoring, human physiology, and human-machine interfaces. However, existing deformable strain sensors still suffer from complex fabrication processes, poor reusability, limited adhesion strength, or structural rigidity. In this work, we introduce a versatile, high-throughput fabrication method of nanostructured, soft material-enabled, miniaturized strain sensors for both structural health monitoring and human physiology detection. Aerosol jet printing of polyimide and silver nanowires enables multifunctional strain sensors with tunable resistance and gauge factor. Experimental study of soft material compositions and multilayered structures of the strain sensor demonstrates the capabilities of strong adhesion and conformal lamination on different surfaces without the use of conventional fixtures and/or tapes. A two-axis, printed strain gauge enables the detection of force-induced strain changes on a curved stem valve for structural health management while offering reusability over 10 times without losing the sensing performance. Direct comparison with a commercial film sensor captures the advantages of the printed soft sensor in enhanced gauge factor and sensitivity. Another type of a stretchable strain sensor in skin-wearable applications demonstrates a highly sensitive monitoring of a subject's motion, pulse, and breathing, validated by comparing it with a clinical-grade system. Overall, the presented comprehensive study of materials, mechanics, printing-based fabrication, and interfacial adhesion shows a great potential of the printed soft strain sensor for applications in continuous structural health monitoring, human health detection, machine-interfacing systems, and environmental condition monitoring.
在结构健康监测、人体生理学和人机界面等领域,机械柔性或可拉伸的软应变传感器具有重要意义。然而,现有的可变形应变传感器仍然存在制造工艺复杂、可重复使用性差、附着力有限或结构刚性等问题。在这项工作中,我们介绍了一种通用的、高通量的制造方法,用于制造基于纳米结构的软材料的小型应变传感器,用于结构健康监测和人体生理检测。聚酰亚胺和银纳米线的气溶胶喷射印刷使具有可调电阻和灵敏系数的多功能应变传感器成为可能。对软材料成分和应变传感器的多层结构的实验研究表明,该应变传感器具有强大的附着力和在不同表面的共形层压能力,无需使用传统的夹具和/或胶带。一个二维打印应变计可用于检测弯曲阀杆上的力引起的应变变化,用于结构健康管理,并且可重复使用超过 10 次,而不会失去传感性能。与商业薄膜传感器的直接比较展示了打印软传感器在增强灵敏系数和灵敏度方面的优势。另一种用于可穿戴皮肤应用的可拉伸应变传感器展示了对人体运动、脉搏和呼吸的高度敏感监测,通过与临床级系统的比较验证了其性能。总的来说,对材料、力学、基于印刷的制造和界面附着力的全面研究表明,打印软应变传感器在连续结构健康监测、人体健康检测、机器接口系统和环境条件监测等应用中具有巨大的潜力。