Clinical Obesity, Institution of Clinical Sciences, Malmö, Lund University, Sweden.
Department of Genetics, Harvard Medical School, Boston, MA, United States of America.
PLoS One. 2019 Sep 27;14(9):e0222445. doi: 10.1371/journal.pone.0222445. eCollection 2019.
Excess weight gain throughout adulthood can lead to adverse clinical outcomes and are influenced by complex factors that are difficult to measure in free-living individuals. Metabolite profiling offers an opportunity to systematically discover new predictors for weight gain that are relatively easy to measure compared to traditional approaches.
Using baseline metabolite profiling data of middle-aged individuals from the Framingham Heart Study (FHS; n = 1,508), we identified 42 metabolites associated (p < 0.05) with longitudinal change in body mass index (BMI). We performed stepwise linear regression to select 8 of these metabolites to build a metabolite risk score (MRS) for predicting future weight gain. We replicated the MRS using data from the Mexico City Diabetes Study (MCDS; n = 768), in which one standard deviation increase in the MRS corresponded to ~0.03 increase in BMI (kg/m2) per year (i.e. ~0.09 kg/year for a 1.7 m adult). We observed that none of the available anthropometric, lifestyle, and glycemic variables fully account for the MRS prediction of weight gain. Surprisingly, we found the MRS to be strongly correlated with baseline insulin sensitivity in both cohorts and to be negatively predictive of T2D in MCDS. Genome-wide association study of the MRS identified 2 genome-wide (p < 5 × 10-8) and 5 suggestively (p < 1 × 10-6) significant loci, several of which have been previously linked to obesity-related phenotypes.
We have constructed and validated a generalizable MRS for future weight gain that is an independent predictor distinct from several other known risk factors. The MRS captures a composite biological picture of weight gain, perhaps hinting at the anabolic effects of preserved insulin sensitivity. Future investigation is required to assess the relationships between MRS-predicted weight gain and other obesity-related diseases.
成年期体重过度增加可导致不良临床结局,且受到复杂因素的影响,这些因素在自由生活个体中难以测量。代谢物特征分析提供了一个机会,可以系统地发现新的体重增加预测因子,与传统方法相比,这些预测因子相对容易测量。
利用弗雷明汉心脏研究(Framingham Heart Study,FHS;n=1508)中年个体的基线代谢物特征分析数据,我们确定了 42 种与体重指数(BMI)纵向变化相关(p<0.05)的代谢物。我们进行逐步线性回归,选择其中 8 种代谢物构建代谢风险评分(metabolite risk score,MRS),以预测未来的体重增加。我们使用墨西哥城糖尿病研究(Mexico City Diabetes Study,MCDS;n=768)的数据复制了 MRS,其中 MRS 每增加一个标准差,BMI 每年增加约 0.03kg/m2(即对于 1.7m 成人,每年增加约 0.09kg)。我们发现,现有的人体测量、生活方式和血糖变量均不能完全解释 MRS 对体重增加的预测。令人惊讶的是,我们发现 MRS 与两个队列中的基线胰岛素敏感性高度相关,并在 MCDS 中对 2 型糖尿病具有负预测作用。MRS 的全基因组关联研究确定了 2 个全基因组(p<5×10-8)和 5 个提示性(p<1×10-6)显著位点,其中一些先前与肥胖相关表型有关。
我们构建并验证了一个可推广的用于未来体重增加的 MRS,它是与其他几个已知风险因素不同的独立预测因子。MRS 捕捉了体重增加的综合生物学特征,可能暗示了保留的胰岛素敏感性的合成代谢作用。需要进一步研究来评估 MRS 预测的体重增加与其他肥胖相关疾病之间的关系。