Suppr超能文献

通过主成分分析可视化运动员监测周期的复杂性

Visualizing the Complexity of the Athlete-Monitoring Cycle Through Principal-Component Analysis.

作者信息

Weaving Dan, Beggs Clive, Dalton-Barron Nicholas, Jones Ben, Abt Grant

出版信息

Int J Sports Physiol Perform. 2019 Oct 1;14(9):1304-1310. doi: 10.1123/ijspp.2019-0045.

Abstract

PURPOSE

To discuss the use of principal-component analysis (PCA) as a dimension-reduction and visualization tool to assist in decision making and communication when analyzing complex multivariate data sets associated with the training of athletes.

CONCLUSIONS

Using PCA, it is possible to transform a data matrix into a set of orthogonal composite variables called principal components (PCs), with each PC being a linear weighted combination of the observed variables and with all PCs uncorrelated to each other. The benefit of transforming the data using PCA is that the first few PCs generally capture the majority of the information (ie, variance) contained in the observed data, with the first PC accounting for the highest amount of variance and each subsequent PC capturing less of the total information. Consequently, through PCA, it is possible to visualize complex data sets containing multiple variables on simple 2D scatterplots without any great loss of information, thereby making it much easier to convey complex information to coaches. In the future, athlete-monitoring companies should integrate PCA into their client packages to better support practitioners trying to overcome the challenges associated with multivariate data analysis and interpretation. In the interim, the authors present here an overview of PCA and associated R code to assist practitioners working in the field to integrate PCA into their athlete-monitoring process.

摘要

目的

探讨主成分分析(PCA)作为一种降维和可视化工具,在分析与运动员训练相关的复杂多变量数据集时辅助决策和沟通的应用。

结论

使用主成分分析,可以将数据矩阵转换为一组称为主成分(PC)的正交复合变量,每个主成分都是观测变量的线性加权组合,且所有主成分彼此不相关。使用主成分分析对数据进行转换的好处是,前几个主成分通常捕获了观测数据中包含的大部分信息(即方差),第一个主成分占方差的比例最高,随后的每个主成分捕获的总信息越来越少。因此,通过主成分分析,可以在简单的二维散点图上可视化包含多个变量的复杂数据集,而不会有太大的信息损失,从而更容易将复杂信息传达给教练。未来,运动员监测公司应将主成分分析纳入其客户套餐,以更好地支持从业者应对与多变量数据分析和解释相关的挑战。在此期间,作者在此介绍主成分分析及相关R代码的概述,以帮助该领域的从业者将主成分分析纳入其运动员监测过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验