Suppr超能文献

多发性骨髓瘤相关基因特征的网络分析

A Network Analysis of Multiple Myeloma Related Gene Signatures.

作者信息

Liu Yu, Yu Haocheng, Yoo Seungyeul, Lee Eunjee, Laganà Alessandro, Parekh Samir, Schadt Eric E, Wang Li, Zhu Jun

机构信息

Sema4, a Mount Sinai Venture, 333 Ludlow St., Stamford, CT 06902, USA.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.

出版信息

Cancers (Basel). 2019 Sep 27;11(10):1452. doi: 10.3390/cancers11101452.

Abstract

Multiple myeloma (MM) is the second most prevalent hematological cancer. MM is a complex and heterogeneous disease, and thus, it is essential to leverage omics data from large MM cohorts to understand the molecular mechanisms underlying MM tumorigenesis, progression, and drug responses, which may aid in the development of better treatments. In this study, we analyzed gene expression, copy number variation, and clinical data from the Multiple Myeloma Research Consortium (MMRC) dataset and constructed a multiple myeloma molecular causal network (M3CN). The M3CN was used to unify eight prognostic gene signatures in the literature that shared very few genes between them, resulting in a prognostic subnetwork of the M3CN, consisting of 178 genes that were enriched for genes involved in cell cycle (fold enrichment = 8.4, value = 6.1 × 10). The M3CN was further used to characterize immunomodulators and proteasome inhibitors for MM, demonstrating the pleiotropic effects of these drugs, with drug-response signature genes enriched across multiple M3CN subnetworks. Network analyses indicated potential links between these drug-response subnetworks and the prognostic subnetwork. To elucidate the structure of these important MM subnetworks, we identified putative key regulators predicted to modulate the state of these subnetworks. Finally, to assess the predictive power of our network-based models, we stratified MM patients in an independent cohort, the MMRF-CoMMpass study, based on the prognostic subnetwork, and compared the performance of this subnetwork against other signatures in the literature. We show that the M3CN-derived prognostic subnetwork achieved the best separation between different risk groups in terms of log-rank test -values and hazard ratios. In summary, this work demonstrates the power of a probabilistic causal network approach to understanding molecular mechanisms underlying the different MM signatures.

摘要

多发性骨髓瘤(MM)是第二常见的血液系统癌症。MM是一种复杂的异质性疾病,因此,利用来自大型MM队列的组学数据来了解MM肿瘤发生、进展和药物反应的分子机制至关重要,这可能有助于开发更好的治疗方法。在本研究中,我们分析了来自多发性骨髓瘤研究联盟(MMRC)数据集的基因表达、拷贝数变异和临床数据,并构建了一个多发性骨髓瘤分子因果网络(M3CN)。M3CN用于统一文献中八个预后基因特征,这些特征之间共享的基因很少,从而形成了M3CN的一个预后子网,该子网由178个基因组成,这些基因在参与细胞周期的基因中富集(富集倍数 = 8.4, 值 = 6.1 × 10)。M3CN进一步用于表征MM的免疫调节剂和蛋白酶体抑制剂,证明了这些药物的多效性,药物反应特征基因在多个M3CN子网中富集。网络分析表明这些药物反应子网与预后子网之间存在潜在联系。为了阐明这些重要的MM子网的结构,我们确定了预测可调节这些子网状态的假定关键调节因子。最后,为了评估我们基于网络的模型的预测能力,我们在一个独立队列MMRF-CoMMpass研究中,根据预后子网对MM患者进行分层,并将该子网的性能与文献中的其他特征进行比较。我们表明,M3CN衍生的预后子网在对数秩检验 值和风险比方面实现了不同风险组之间的最佳分离。总之,这项工作证明了概率因果网络方法在理解不同MM特征背后的分子机制方面的强大作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a371/6827160/8818a4f0d304/cancers-11-01452-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验