Suppr超能文献

寻找最优的被动微流控混合器设计。

Finding the optimal design of a passive microfluidic mixer.

机构信息

Key Laboratory of RF Circuits and Systems, Ministry of Education, and Zhejiang Provincial Laboratory of Integrated Circuit Design, Hangzhou Dianzi University, China.

College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, China.

出版信息

Lab Chip. 2019 Nov 7;19(21):3618-3627. doi: 10.1039/c9lc00546c. Epub 2019 Oct 2.

Abstract

The ability to thoroughly mix two fluids is a fundamental need in microfluidics. While a variety of different microfluidic mixers have been designed by researchers, it remains unknown which (if any) of these mixers are optimal (that is, which designs provide the most thorough mixing with the smallest possible fluidic resistance across the mixer). In this work, we automatically designed and rationally optimized a microfluidic mixer. We accomplished this by first generating a library of thousands of different randomly designed mixers, then using the non-dominated sorting genetic algorithm II (NSGA-II) to optimize the random chips in order to achieve Pareto efficiency. Pareto efficiency is a state of allocation of resources (e.g. driving force) from which it is impossible to reallocate so as to make any one individual criterion better off (e.g. pressure drop) without making at least one individual criterion (e.g. mixing performance) worse off. After 200 generations of evolution, Pareto efficiency was achieved and the Pareto-optimal front was found. We examined designs at the Pareto-optimal front and found several design criteria that enhance the mixing performance of a mixer while minimizing its fluidic resistance; these observations provide new criteria on how to design optimal microfluidic mixers. Additionally, we compared the designs from NSGA-II with some popular microfluidic mixer designs from the literature and found that designs from NSGA-II have lower fluidic resistance with similar mixing performance. As a proof of concept, we fabricated three mixer designs from 200 generations of evolution and one conventional popular mixer design and tested the performance of these four mixers. Using this approach, an optimal design of a passive microfluidic mixer is found and the criteria of designing a passive microfluidic mixer are established.

摘要

彻底混合两种流体的能力是微流控中的基本需求。虽然研究人员设计了各种不同的微流混合器,但仍不清楚哪种(如果有)混合器是最优的(即哪种设计在混合器中提供了最小的流体阻力和最彻底的混合)。在这项工作中,我们自动设计并合理优化了微流混合器。我们首先生成了一个由数千个不同随机设计混合器组成的库,然后使用非支配排序遗传算法二(NSGA-II)来优化随机芯片,以实现帕累托效率。帕累托效率是一种资源(例如驱动力)的分配状态,从这种状态中不可能重新分配资源,以使任何一个个体标准(例如压降)变得更好,而不会使至少一个个体标准(例如混合性能)变得更差。经过 200 代的进化,实现了帕累托效率,并找到了帕累托最优前沿。我们检查了帕累托最优前沿的设计,并发现了几个设计标准,可以在最小化流体阻力的同时提高混合器的混合性能;这些观察结果提供了如何设计最佳微流混合器的新标准。此外,我们将 NSGA-II 的设计与文献中的一些流行的微流混合器设计进行了比较,发现 NSGA-II 的设计具有更低的流体阻力和相似的混合性能。作为一个概念验证,我们从 200 代的进化中制造了三个混合器设计和一个传统的流行混合器设计,并测试了这四个混合器的性能。通过这种方法,找到了一种被动微流混合器的最佳设计,并建立了被动微流混合器的设计标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验