Suppr超能文献

基于监督式机器学习的视网膜病变多任务人工智能分类

Supervised Machine Learning Based Multi-Task Artificial Intelligence Classification of Retinopathies.

作者信息

Alam Minhaj, Le David, Lim Jennifer I, Chan R V P, Yao Xincheng

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.

Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.

出版信息

J Clin Med. 2019 Jun 18;8(6):872. doi: 10.3390/jcm8060872.

Abstract

Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify subtle vascular distortions, which are useful for classifying retinovascular diseases. However, application of AI for differentiation and classification of multiple eye diseases is not yet established. In this study, we demonstrate supervised machine learning based multi-task OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to differentiate different ocular disease conditions from each other, and 3) to stage the severity of each ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images. A stepwise backward elimination approach was employed to identify sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised machine leaning classifier. The presented AI classification methodology is applicable and can be readily extended to other ocular diseases, holding promise to enable a mass-screening platform for clinical deployment and telemedicine.

摘要

人工智能(AI)分类有望成为一种用于眼部疾病临床管理的新型且经济实惠的筛查工具。农村及医疗服务不足地区因难以获得经验丰富的眼科医生服务,可能会特别受益于这项技术。定量光学相干断层扫描血管造影(OCTA)成像具有出色的能力来识别细微的血管扭曲,这对于视网膜血管疾病的分类很有用。然而,AI在多种眼部疾病的鉴别和分类中的应用尚未确立。在本研究中,我们展示了基于监督式机器学习的多任务OCTA分类。我们旨在1)区分正常与患病的眼部状况,2)区分不同的眼部疾病状况,以及3)对每种眼部状况的严重程度进行分期。从OCTA图像中完全自动提取了定量OCTA特征,包括血管迂曲度(BVT)、血管口径(BVC)、血管周长指数(VPI)、血管密度(BVD)、黄斑无血管区(FAZ)面积(FAZ - A)以及FAZ轮廓不规则性(FAZ - CI)。采用逐步向后消除方法来识别用于多任务分类的敏感OCTA特征和最佳特征组合。为了进行概念验证演示,使用糖尿病视网膜病变(DR)和镰状细胞视网膜病变(SCR)来验证监督式机器学习分类器。所提出的AI分类方法是适用的,并且可以很容易地扩展到其他眼部疾病,有望实现一个用于临床部署和远程医疗的大规模筛查平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a248/6617139/de087e7a6b3b/jcm-08-00872-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验